SVMshow
SVMshow
% http://www.peteryu.ca/tutorials/matlab/visualize_decision_boundaries % load RankData
% NumTrain =200; load RankData2 lambda = 20;
rho = 1;
c1 =10;
c2 =10;
epsilon = 0.2;
result=[]; ker = 'lin';
sigma = 1/50;
par = NonLinearDualSVORIM(X, y, c1, c2, epsilon, rho, ker, sigma); % set up the domain over which you want to visualize the decision
% boundary
xrange = [-5 5];
yrange = [-5 5];
% step size for how finely you want to visualize the decision boundary.
inc = 0.1;
% generate grid coordinates. this will be the basis of the decision
% boundary visualization.
[x1, x2] = meshgrid(xrange(1):inc:xrange(2), yrange(1):inc:yrange(2));
% size of the (x, y) image, which will also be the size of the
% decision boundary image that is used as the plot background.
image_size = size(x1) xy = [x1(:) x2(:)]; % make (x,y) pairs as a bunch of row vectors.
%xy = [reshape(x, image_size(1)*image_size(2),1) reshape(y, image_size(1)*image_size(2),1)] % loop through each class and calculate distance measure for each (x,y)
% from the class prototype. % calculate the city block distance between every (x,y) pair and
% the sample mean of the class.
% the sum is over the columns to produce a distance for each (x,y)
% pair.
d = [];
for k=1:max(y)
d(:,k) = decisionfun(xy, par, X,y,k,epsilon, ker,sigma)';
end
[~,idx] = min(abs(d),[],2) % reshape the idx (which contains the class label) into an image.
decisionmap = reshape(idx, image_size); figure; %show the image
imagesc(xrange,yrange,decisionmap);
hold on;
set(gca,'ydir','normal'); % colormap for the classes:
% class 1 = light red, 2 = light green, 3 = light blue
cmap = [1 0.8 0.8; 0.95 1 0.95; 0.9 0.9 1]
colormap(cmap); % label the axes.
xlabel('x1');
ylabel('x2'); imagesc(xrange,yrange,decisionmap); % plot the class training data. color = {'r.','go','b*','r.','go','b*'};
for i=1:max(y)
plot(X(y==i,1),X(y==i,2), color{i});
hold on
end
% include legend
legend('Class 1', 'Class 2', 'Class 3','Location','NorthOutside', ...
'Orientation', 'horizontal'); hold on;
set(gca,'ydir','normal');
SVMshow的更多相关文章
随机推荐
- [HDOJ3911]Black And White(线段树,区间合并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3911 题意:一个01串,两种操作: 0 a b:查询[a,b]内连续1的最长长度. 1 a b:翻转[ ...
- 选择屏幕(Selection Screen)
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- eclipse格式化代码
在Eclipse下安装.使用Jalopy方法 http://hi.baidu.com/zdz8207/item/c2972e172ad3efdcbf9042d6 http://www.cnblogs. ...
- Nofollow
今天整理一下SEO中经常用到的nofollow属性. nofollow它是HTML标签中的一个属性值,作用是告诉搜索引擎不要跟踪带有改属性值的链接, 用于指示搜索引擎不要追踪(即抓取)网页上的带有no ...
- iOS - Swift Swift 语言新特性
1.Swift 2.0 带来哪些新变化 常规变化: 1.OS X 10.11.iOS 9 和 watchOS 2 SDK 采纳了一些 Objective-C 的特性用来提高 Swift 的编程体验, ...
- iOS - NSURLConnection 网络请求
前言 @interface NSURLConnection : NSObject class NSURLConnection : NSObject DEPRECATED: The NSURLConne ...
- Nginx基础知识之————Nginx 环境的搭建?
本课时主要给大家讲解如何在 Linux 系统下搭建 Nginx 和 Nginx 搭建过程中常见问题的知识,并结合实例让学员掌握 Nginx 环境的搭建. 下载解压: 安装gcc-c++ 从新配置文件: ...
- [转载] 对象存储(2):OpenStack Swift——概念、架构与规模部署
原文: http://www.testlab.com.cn/Index/article/id/1085.html#rd?sukey=fc78a68049a14bb228cb2742bdec2b9498 ...
- tracert 命令详解
tracert 命令详解 How to Use the TRACERT Utility The TRACERT diagnostic utility determines the route to a ...
- 脱壳脚本_手脱壳ASProtect 2.1x SKE -> Alexey Solodovnikov
脱壳ASProtect 2.1x SKE -> Alexey Solodovnikov 用脚本.截图 1:查壳 2:od载入 3:用脚本然后打开脚本文件Aspr2.XX_unpacker_v1. ...