SVMshow
SVMshow
% http://www.peteryu.ca/tutorials/matlab/visualize_decision_boundaries % load RankData
% NumTrain =200; load RankData2 lambda = 20;
rho = 1;
c1 =10;
c2 =10;
epsilon = 0.2;
result=[]; ker = 'lin';
sigma = 1/50;
par = NonLinearDualSVORIM(X, y, c1, c2, epsilon, rho, ker, sigma); % set up the domain over which you want to visualize the decision
% boundary
xrange = [-5 5];
yrange = [-5 5];
% step size for how finely you want to visualize the decision boundary.
inc = 0.1;
% generate grid coordinates. this will be the basis of the decision
% boundary visualization.
[x1, x2] = meshgrid(xrange(1):inc:xrange(2), yrange(1):inc:yrange(2));
% size of the (x, y) image, which will also be the size of the
% decision boundary image that is used as the plot background.
image_size = size(x1) xy = [x1(:) x2(:)]; % make (x,y) pairs as a bunch of row vectors.
%xy = [reshape(x, image_size(1)*image_size(2),1) reshape(y, image_size(1)*image_size(2),1)] % loop through each class and calculate distance measure for each (x,y)
% from the class prototype. % calculate the city block distance between every (x,y) pair and
% the sample mean of the class.
% the sum is over the columns to produce a distance for each (x,y)
% pair.
d = [];
for k=1:max(y)
d(:,k) = decisionfun(xy, par, X,y,k,epsilon, ker,sigma)';
end
[~,idx] = min(abs(d),[],2) % reshape the idx (which contains the class label) into an image.
decisionmap = reshape(idx, image_size); figure; %show the image
imagesc(xrange,yrange,decisionmap);
hold on;
set(gca,'ydir','normal'); % colormap for the classes:
% class 1 = light red, 2 = light green, 3 = light blue
cmap = [1 0.8 0.8; 0.95 1 0.95; 0.9 0.9 1]
colormap(cmap); % label the axes.
xlabel('x1');
ylabel('x2'); imagesc(xrange,yrange,decisionmap); % plot the class training data. color = {'r.','go','b*','r.','go','b*'};
for i=1:max(y)
plot(X(y==i,1),X(y==i,2), color{i});
hold on
end
% include legend
legend('Class 1', 'Class 2', 'Class 3','Location','NorthOutside', ...
'Orientation', 'horizontal'); hold on;
set(gca,'ydir','normal');
SVMshow的更多相关文章
随机推荐
- [转]What you need to know about transimpedance amplifiers – part 1
Transimpedance amplifiers (TIAs) act as front-end amplifiers for optical sensors such as photodiodes ...
- Spring的IoC容器注入的类型
Spring除了可以注入Bean实例外,还可以注入其他数据类型. 注入基本数据类型 xml配置文件中的init-method="init"属性是取得Bean实例之后,输入属性值后自 ...
- 屏幕序列Screen Sequences
声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...
- Web项目中创建简单的错误处理页面
当应用程序出现错误的时候,如果没有做错误页面处理的话,会直接输出一些敏感的信息出来,有时候甚至会直接将项目所在的物理路径给显示出来,严重缺乏安全性,并且错误种类繁多,页面风格不一,导致用户体验不好,本 ...
- 生产者-消费者 用非阻塞队列、Object.wait()、Object.notify()实现
非阻塞队列,需要考虑到: 1.并发中的同步 2.线程间通信 public class Quene_Pro_Con { //定义队列大小 private static int size = 10; // ...
- How to run an manually installed program from terminals in Linux / Ubuntu
Say we have installed qt programs and we want to run qtcreator from the command line. What we need h ...
- LINQ之路 2:C# 3.0的语言功能(上)
在上一篇的LINQ介绍中,我们已经看到了隐式类型变量var,扩展方法(extension method)和lambda表达式的身影.没错,他们正是LINQ技术的基石,是他们让LINQ的实现成为可能,并 ...
- 2013 Multi-University Training Contest 4
HDU-4632 Palindrome subsequence 题意:给定一个字符串,长度最长为1000,问该串有多少个回文子串. 分析:设dp[i][j]表示从 i 到 j 有多少个回文子串,则有动 ...
- Spring AOP执行方法
execution(* springinaction.springidol.Instrument.play(..)) * 代表返回为任意类型 springinaction.springidol.I ...
- 反演dp经典
咋一看,至少要用3^n才能做到. 但. 首先定义: 可以发现只要求出a' b' 那么直接可以得出c' 那么如何求a'呢 //dp求a',其实就是分别用[0,n)来更新a' ; i < n; i+ ...