BP算法很难调试,一般情况下会隐隐存在一些小问题,比如(off-by-one error),即只有部分层的权重得到训练,或者忘记计算bais unit,这虽然会得到一个正确的结果,但效果差于准确BP得到的结果。

有了cost function,目标是求出一组参数W,b,这里以表示,cost function 暂且记做。假设 ,则 ,即一维情况下的Gradient Descent:

根据6.2中对单个参数单个样本的求导公式:

可以得到每个参数的偏导数,对所有样本累计求和,可以得到所有训练数据对参数  的偏导数记做  , 是靠BP算法求得的,为了验证其正确性,看下图回忆导数公式:

可见有:那么对于任意  值,我们都可以对等式左边的导数用:

来近似。

给定一个被认为能计算  的函数,可以用下面的数值检验公式

应用时,通常把设置为一个很小的常量,比如在 数量级,最好不要太小了,会造成数值的舍入误差。上式两端值的接近程度取决于  的具体形式。假定 的情况下,上式左右两端至少有4位有效数字是一样的(通常会更多)。

是一个n维向量而不是实数时,且 ,在 Neorons Network 中,J(W,b)可以想象为 W,b 组合扩展而成的一个长向量 ,现在又一个计算 的函数 ,如何检验能否输出到正确结果呢,用的取值来检验,对于向量的偏导数:

根据上图,对 求导时,只需要在向量的第i维上进行加减操作,然后求值即可,定义 ,其中

 和  几乎相同,除了第  行元素增加了 ,类似地, 得到的第  行减小了 ,然后求导并与比较:

中的参数对应的是参数向量中一个分量的细微变化,损失函数J 在不同情况下会有不同的值(比如三层NN 或者 三层autoencoder(需加上稀疏项)),上式中左边为BP算法的结果,右边为真正的梯度,只要两者很接近,说明BP算法是在正确工作,对于梯度下降中的参数是按照如下方式进行更新的:

即有  分别为:

最后只需总体损失函数J(W,b)的偏导数与上述 的值比较即可。

除了梯度下降外,其他的常见的优化算法:1) 自适应的步长,2) BFGS L-BFGS,3) SGD,4) 共轭梯度算法,以后涉及到再看。

(六) 6.3 Neurons Networks Gradient Checking的更多相关文章

  1. CS229 6.3 Neurons Networks Gradient Checking

    BP算法很难调试,一般情况下会隐隐存在一些小问题,比如(off-by-one error),即只有部分层的权重得到训练,或者忘记计算bais unit,这虽然会得到一个正确的结果,但效果差于准确BP得 ...

  2. (六) 6.1 Neurons Networks Representation

    面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...

  3. (六) 6.2 Neurons Networks Backpropagation Algorithm

    今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...

  4. (六)6.10 Neurons Networks implements of softmax regression

    softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...

  5. (六)6.5 Neurons Networks Implements of Sparse Autoencoder

    一大波matlab代码正在靠近.- -! sparse autoencoder的一个实例练习,这个例子所要实现的内容大概如下:从给定的很多张自然图片中截取出大小为8*8的小patches图片共1000 ...

  6. (六)6.16 Neurons Networks linear decoders and its implements

    Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...

  7. (六)6.13 Neurons Networks Implements of stack autoencoder

    对于加深网络层数带来的问题,(gradient diffuse  局部最优等)可以使用逐层预训练(pre-training)的方法来避免 Stack-Autoencoder是一种逐层贪婪(Greedy ...

  8. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Gradient Checking)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In ...

  9. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第一周(Practical aspects of Deep Learning) —— 4.Programming assignments:Gradient Checking

    Gradient Checking Welcome to this week's third programming assignment! You will be implementing grad ...

随机推荐

  1. github and SourceTree初步使用

    1.建立连接(一次就行了) 输入你的github名字 2.创建仓库 3.下载仓库 这个时候打开SouceTree就可以看到之前创的仓库了 点击克隆,创建一个文件夹,讲路径设置好 这时候查看本地列表就会 ...

  2. UVA 10635 Prince and Princess

    题意描述:有两个长度分别为p+1和q+1的序列,每个元素中的各个元素互不相同.都是1~n^2之间的整数,求A和B的最长公共子序列.(2<=n<=250,1<=p,q<=n^2) ...

  3. dd大牛的《背包九讲》

    P01: 01背包问题 题目 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大. 基本思路 这是最 ...

  4. sparksql链接mysql

    1.在IDEA上建立一个sparksql_mysql的scala对象. 2.连接mysql的代码如下 import java.sql.{DriverManager, PreparedStatement ...

  5. java基础知识回顾之接口

    /* abstract class AbsDemo { abstract void show1(); abstract void show2(); } 当一个抽象类中的方法都是抽象的时候,这时可以将该 ...

  6. ARP欺骗与中间人攻击

    前言: 上一篇WPA/WAP2wifi 密码破解笔记说到如何探测附近开放的AP并且破解进入,那么进入别人据局域网我们能干些什么呢?换句话说如果别人进入了我们内部网络,会有什么影响?本文简要介绍了ARP ...

  7. 可灵活扩展的自定义Session状态存储驱动

    Session是互联网应用中非常重要的玩意儿,对于超过单台部署的站点集群,都会存在会话共享的需求.在web.config中,微软提供了sessionstate节点来定义不同的Session状态存储方式 ...

  8. mq_send

    NAME mq_send - 将消息发送到消息队列 (REALTIME) SYNOPSIS #include <mqueue.h>int mq_send(mqd_t mqdes, cons ...

  9. VC高手们的博客

    http://www.cnblogs.com/killmyday/tag/Debug/ (关于符号调试等内容比较多)

  10. 【重走Android之路】【Java面向对象基础(三)】面向对象思想

    [重走Android之路][基础篇(三)][Java面向对象基础]面向对象思想   1 面向对象的WWH   1.1 What--什么是面向对象         首先,要理解“对象”.在Thinkin ...