错误一:

// :: ERROR Executor: Exception in task 0.0 in stage 0.0 (TID )
java.lang.NoSuchMethodError: scala.Product.$init$(Lscala/Product;)V
at Person.<init>(RDD_To_DataFrame.scala:)
at RDD_To_DataFrame$.$anonfun$main$(RDD_To_DataFrame.scala:)
at scala.collection.Iterator$$anon$.next(Iterator.scala:)
at scala.collection.Iterator$$anon$.next(Iterator.scala:)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$$$anon$.hasNext(WholeStageCodegenExec.scala:)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$.apply(SparkPlan.scala:)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$.apply(SparkPlan.scala:)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$$anonfun$apply$.apply(RDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$$anonfun$apply$.apply(RDD.scala:)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:)
at org.apache.spark.scheduler.Task.run(Task.scala:)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)
// :: ERROR TaskSetManager: Task in stage 0.0 failed times; aborting job
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task in stage 0.0 failed times, most recent failure: Lost task 0.0 in stage 0.0 (TID , localhost, executor driver): java.lang.NoSuchMethodError: scala.Product.$init$(Lscala/Product;)V
at Person.<init>(RDD_To_DataFrame.scala:)
at RDD_To_DataFrame$.$anonfun$main$(RDD_To_DataFrame.scala:)
at scala.collection.Iterator$$anon$.next(Iterator.scala:)
at scala.collection.Iterator$$anon$.next(Iterator.scala:)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$$$anon$.hasNext(WholeStageCodegenExec.scala:)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$.apply(SparkPlan.scala:)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$.apply(SparkPlan.scala:)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$$anonfun$apply$.apply(RDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$$anonfun$apply$.apply(RDD.scala:)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:)
at org.apache.spark.scheduler.Task.run(Task.scala:)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:) Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$.apply(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$.apply(DAGScheduler.scala:)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$.apply(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$.apply(DAGScheduler.scala:)
at scala.Option.foreach(Option.scala:)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:)
at org.apache.spark.util.EventLoop$$anon$.run(EventLoop.scala:)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:)
at org.apache.spark.sql.Dataset$$anonfun$head$.apply(Dataset.scala:)
at org.apache.spark.sql.Dataset$$anonfun$head$.apply(Dataset.scala:)
at org.apache.spark.sql.Dataset$$anonfun$.apply(Dataset.scala:)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:)
at org.apache.spark.sql.Dataset.head(Dataset.scala:)
at org.apache.spark.sql.Dataset.take(Dataset.scala:)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:)
at org.apache.spark.sql.Dataset.show(Dataset.scala:)
at org.apache.spark.sql.Dataset.show(Dataset.scala:)
at org.apache.spark.sql.Dataset.show(Dataset.scala:)
at RDD_To_DataFrame$.main(RDD_To_DataFrame.scala:)
at RDD_To_DataFrame.main(RDD_To_DataFrame.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:)
at java.lang.reflect.Method.invoke(Method.java:)
at com.intellij.rt.execution.application.AppMain.main(AppMain.java:)
Caused by: java.lang.NoSuchMethodError: scala.Product.$init$(Lscala/Product;)V
at Person.<init>(RDD_To_DataFrame.scala:)
at RDD_To_DataFrame$.$anonfun$main$(RDD_To_DataFrame.scala:)
at scala.collection.Iterator$$anon$.next(Iterator.scala:)
at scala.collection.Iterator$$anon$.next(Iterator.scala:)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$$$anon$.hasNext(WholeStageCodegenExec.scala:)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$.apply(SparkPlan.scala:)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$.apply(SparkPlan.scala:)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$$anonfun$apply$.apply(RDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$$$anonfun$apply$.apply(RDD.scala:)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:)
at org.apache.spark.scheduler.Task.run(Task.scala:)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)

错误处理:将IDEA中的Scala 改为2.10.4版本

这个问题主要出现在 Spark程序使用 case class 类时

错误二:

Error:(, ) No TypeTag available for (Array[String],)
val documentDF= spark.createDataFrame(Seq(

错误处理:将IDEA中的Scala 改为2.12.3版本

这个问题主要出现在 Spark程序使用 Seq时:

比如:

val df= spark.createDataFrame(Seq(
(,Array("soyo","spark","soyo2","soyo","")),
(,Array("soyo","hadoop","soyo","hadoop","xiaozhou","soyo2","spark","","")),
(,Array("soyo","spark","soyo2","hadoop","soyo3","")),
(,Array("soyo","spark","soyo20","hadoop","soyo2","","")),
(,Array("soyo","","spark","","spark","spark",""))
)).toDF("id","words")

IDEA Spark程序报错处理的更多相关文章

  1. 解决spark程序报错:Caused by: java.util.concurrent.TimeoutException: Futures timed out after [300 seconds]

    报错信息: 09-05-2017 09:58:44 CST xxxx_job_1494294485570174 INFO - at org.apache.spark.sql.catalyst.erro ...

  2. eclispe集成Scalas环境后,导入外部Spark包报错:object apache is not a member of package org

    在Eclipse中集成scala环境后,发现导入的Spark包报错,提示是:object apache is not a member of package org,网上说了一大推,其实问题很简单: ...

  3. 运行编译后的程序报错 error while loading shared libraries: lib*.so: cannot open shared object file: No such file or directory

    运行编译后的程序报错  error while loading shared libraries: lib*.so: cannot open shared object file: No such f ...

  4. Window7中Eclipse运行MapReduce程序报错的问题

    按照文档:http://www.micmiu.com/bigdata/hadoop/hadoop2x-eclipse-mapreduce-demo/安装配置好Eclipse后,运行WordCount程 ...

  5. eclipse运行hadoop程序报错:Connection refused: no further information

    eclipse运行hadoop程序报错:Connection refused: no further information log4j:WARN No appenders could be foun ...

  6. WinDbg抓取程序报错dump文件的方法

    程序崩溃的两种主要现象: a. 程序在运行中的时候,突然弹出错误窗口,然后点错误窗口的确定时,程序直接关闭 例如: “应用程序错误” “C++错误之类的窗口” “程序无响应” “假死”等 此种崩溃特点 ...

  7. 记录微信小程序报错 Unexpected end of JSON input;at pages/flow/checkout page getOrderData function

    微信小程序报错 Unexpected end of JSON input;at pages/flow/checkout page getOrderData function 这个报错是在将数组对象通过 ...

  8. 小程序-报错 xxx is not defined (已解决)

    小程序-报错 xxx is not defined (已解决) 问题情境: 这样一段代码,微信的小程序报错 is not defined 我 wxml 想这样调用 //wxml 代码 <view ...

  9. debug运行java程序报错

    debug运行java程序报错 ERROR: transport error 202: connect failed: Connection timed out ERROR: JDWP Transpo ...

随机推荐

  1. block的作用

    ios高效开发--blocks相关   1.替换delegate       如果我们有2个viewController,a和b,当我们从a界面push到b后,在b上面触发了一些事件,这些时间又会影响 ...

  2. The C Programming Language-4.1

    下面是c程序设计语言4.1代码以及我的一些理解 strindex函数,通过嵌套两次循环,在s[ ]和t[ ]两个数组对映元素相等且t[ ]尚未遍历完毕的情况下,不断循环,最终返回正数或-1 代码如下 ...

  3. eclipse自动提示配置

    打开Window->Preferences

  4. stall and flow separation on airfoil or blade

    stall stall and flow separation Table of Contents 1. Stall and flow separation 1.1. Separation of Bo ...

  5. java 使用OpenOffice文件实现预览

    1.安装OpenOffice软件 安装教程:https://jingyan.baidu.com/article/c275f6ba12c07ce33d756732.html 2.安装完成后,创建项目,p ...

  6. Git--删除远程仓库文件但不删除本地仓库资源

    我们在使用idea开发的过程中经常会出现新建项目的时候直接把xxx.iml文件也添加到了git trace 当然这并不会出现什么问题,问题是当我们把xxx.iml文件push到我们github上之后, ...

  7. 【Codeforces 584D】Dima and Lisa

    [链接] 我是链接,点我呀:) [题意] 让你把一个奇数n分成最多个质数的和 [题解] 10的9次方以内,任意两个质数之间的差距最大为300 因此可以这样,我们先从i=n-2开始一直递减直到i变成最大 ...

  8. [luoguP1631] 序列合并(堆 || 优先队列)

    传送门 首先,把A和B两个序列分别从小到大排序,变成两个有序队列.这样,从A和B中各任取一个数相加得到N2个和,可以把这些和看成形成了n个有序表/队列: A[1]+B[1] <= A[1]+B[ ...

  9. [luoguP2854] [USACO06DEC]牛的过山车Cow Roller Coaster(DP + sort)

    传送门 先按照起点 sort 一遍. 这样每一个点的只由前面的点决定. f[i][j] 表示终点为 i,花费 j 的最优解 状态转移就是一个01背包. ——代码 #include <cstdio ...

  10. swift kilo版代码更新

    今天重新搭建swift服务器,git下代码后一时好奇,进入kilo/stable branch后,与四个月前下载的swift/kilo版本做了个比较.使用diff命令完成.发现代码还是略有区别. di ...