\(Des\)

\(Sol\)

\(upd:\)以下两段是错误做法,但我不想删掉\(.jpg\)

-----------------------以下是错误部分------------------------------

看到问\(\sum_{n-l}^rf(n)\)一定会想到数位\(dp\)叭,于是尝试数位\(dp\),然而并不会做.但是觉得可以先尝试想暴力方法(当然是优秀点的暴力)?

对于一个数\(abcd\),如下变化:\((a+b)(b+c)(c+d)\),\((a+2b+c)(b+2c+d)\),\((a+3b+3c+d)\),注意到其实中间过程中有没有取\(\%\)并没有影响,就这样加起来到最后再取\(\%\)是一样的.看到这里我想到了杨辉三角形.到这里可以得出,对于一个数\(x\),我们可以在\(log_{10}x\)的时间里得出\(f(x)\).然后你就可以去打暴力了.

-----------------------以下是正确部分------------------------------

容易发现,若最后一位的数字变化\(1\),那么其\(f\)值也会变化\(1\).又因为\(f\)值只能取\(0\)到\(1\).所以对于连续的十个数,它们的\(f\)值的和是\(\sum_{i=0}^9i=45.\)于是要算出\(\sum_{i=1}^{l}f(i)\)就要简单多了,先\(as+=45*(l/10)\),然后单独计算一下后面剩下的数就好了(只要暴力计算剩下的数的第一个就好了,其他的都可以推出来).最后的答案就是\(sol(r)-sol(l-1)\).

总结一下,这题似乎不能用数位\(dp\),而且数据范围又那么大,其实可以猜测到一定是有规律的一些数可以捆绑在一起算,这些数捆绑在一起的值又会有一定的规律.(突然想起上个学期做过的一个三角函数的题目,也是连续三个一起算,然后这个值又是是循环起来的).要找出这个规律就一定要去分析这个\(f(n)\)的性质/特殊性.

\(over.\)

\(Code\)

上午脑子很乱,\(Wa\)了\(Inf\)次,中午睡醒后重构一遍,虽然第一遍仍然没有过样例,但是再冷静地查了下错,于是过样例之后一遍\(A\)了.

Code
#include<bits/stdc++.h>
#define il inline
#define Ri register int
#define go(i,a,b) for(Ri i=a;i<=b;++i)
#define yes(i,a,b) for(Ri i=a;i>=b;--i)
#define e(i,u) for(Ri i=b[u];i;i=a[i].nt)
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
#define db double
#define inf 2147483647
using namespace std;
il ll read()
{
ll x=0,y=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')y=-1;c=getchar();}
while(c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
return x*y;
}
int a[20];
il ll calc(ll x)
{
Ri ct=0;
mem(a,0);
while(x){a[++ct]=x%10,x/=10;}
while(ct>1)
{
go(i,1,ct-1)a[i]=(a[i]+a[i+1])%10;
--ct;while(!a[ct] && ct>0)--ct;
}
return a[1];
}
il ll sol(ll x)
{
ll ret=(x+1)/10*45,ct=(x+1)%10;
ll qvq=calc(x-ct+1);
while(ct--)
{
ret+=qvq;
qvq=(qvq+1)%10;
}
return ret;
}
int main()
{
int T=(int)read();
while(T--)
{
ll l=read(),r=read();
//printf("sol(%lld)=%lld sol(%lld)=%lld\n",l-1,sol(l-1),r,sol(r));
printf("%lld\n",sol(r)-sol(l-1));
}
return 0;
}

随机推荐

  1. oracle函数 VSIZE(X)

    [功能]返回X的大小(字节)数 [参数]x select vsize(user),user from dual; 返回:6 asdied select length('adfad合理') " ...

  2. APICloud ajax请求api数据问题

    云编译开启全局加密的情况下,请务必使用api.ajax,避免使用JQ等框架的ajax,否则将引起请求失败.官网API说明链接 还要就是要注意用$.ajax请求数据时会出现的同源策略问题.

  3. Android图形子系统

    图形操作可以有两种方式实现:一是利用通用CPU模拟图形操作:二是利用GPU专门做图形操作.前者会增加CPU的负担,在现在高分辨率已经是普遍现象的时候,让通用处理器来完成大量的图形计算已经不现实.And ...

  4. LEMP--如何在Ubuntu上安装Linux、Nginx、MySQL和PHP

    简介 LEMP是用来搭建动态网站的一组软件,首字母缩写分别表示Linux.Nginx(Engine-X).MySQL和PHP. 本文将讲述如何在Ubuntu安装LEMP套件.当然,首先要安装Ubunt ...

  5. Python--day68--ORM内容回顾

    Django项目如何使用ORM连接MySQL: 多对多关系讲解:

  6. 2013年NOIP普及组复赛题解

    题目涉及算法: 计数问题:枚举: 表达式求值:栈: 小朋友的数字:动态规划: 车站分级:最长路. 计数问题 题目链接:https://www.luogu.org/problem/P1980 因为数据量 ...

  7. uni-app学习记录05-二级联动及获取DOM对象

    <template> <view> <view class="id"> <view class="left"> ...

  8. Python--day25--面向对象之封装

    狭义上的封装的例子:(例1)Python就只有两种类型:公有和私有,没有Java中说的那种保护类型 例2: 例3:正常的方法调用私有方法 封装总结:

  9. Git 取消跟踪已版本控制的文件(亲测可行)

    git 不再追踪文件改动 git update-index --assume-unchanged filePath git 恢复追踪文件改动 git update-index —no-assume-u ...

  10. js基础——变量、作用域、内存

    1.new关键字创建的是引用类型: eg. var box = new Object();      box.name = "Linda";//引用类型添加属性没问题     al ...