Handling Missing Values
1) A Simple Option: Drop Columns with Missing Values
如果这些列具有有用信息(在未丢失的位置),则在删除列时,模型将失去对此信息的访问权限。 此外,如果您的测试数据在您的训练数据没有的地方缺少值,则会导致错误。
data_without_missing_values = original_data.dropna(axis=1) #同时操作tran和test部分
cols_with_missing = [col for col in original_data.columns
if original_data[col].isnull().any()]
redued_original_data = original_data.drop(cols_with_missing, axis=1)
reduced_test_data = test_data.drop(cols_with_missing, axis=1)
2) A Better Option: Imputation
默认行为填写了插补的平均值。 统计学家已经研究了更复杂的策略,但是一旦将结果插入复杂的机器学习模型,那些复杂的策略通常没有任何好处。
关于Imputation的一个(很多)好处是它可以包含在scikit-learn Pipeline中。 管道简化了模型构建,模型验证和模型部署。
from sklearn.impute import SimpleImputer
my_imputer = SimpleImputer()
data_with_imputed_values = my_imputer.fit_transform(original_data)
3) An Extension To Imputation
估算是标准方法,通常效果很好。 但是,估算值可能系统地高于或低于其实际值(未在数据集中收集)。 或者具有缺失值的行可能以某种其他方式看来是唯一的。 在这种情况下,您的模型会通过考虑最初缺少哪些值来做出更好的预测。
# make copy to avoid changing original data (when Imputing)
new_data = original_data.copy() # make new columns indicating what will be imputed
cols_with_missing = (col for col in new_data.columns
if new_data[col].isnull().any())
for col in cols_with_missing:
new_data[col + '_was_missing'] = new_data[col].isnull() # Imputation
my_imputer = SimpleImputer()
new_data = pd.DataFrame(my_imputer.fit_transform(new_data))
new_data.columns = original_data.columns
Example (Comparing All Solutions)
import pandas as pd # Load data
melb_data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split melb_target = melb_data.Price
melb_predictors = melb_data.drop(['Price'], axis=1) # For the sake of keeping the example simple, we'll use only numeric predictors.
melb_numeric_predictors = melb_predictors.select_dtypes(exclude=['object']) from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(melb_numeric_predictors,
melb_target,
train_size=0.7,
test_size=0.3,
random_state=0) def score_dataset(X_train, X_test, y_train, y_test):
model = RandomForestRegressor()
model.fit(X_train, y_train)
preds = model.predict(X_test)
return mean_absolute_error(y_test, preds) # Get Model Score from Dropping Columns with Missing Values
# 直接丢弃含有缺失值的列
cols_with_missing = [col for col in X_train.columns
if X_train[col].isnull().any()]
reduced_X_train = X_train.drop(cols_with_missing, axis=1)
reduced_X_test = X_test.drop(cols_with_missing, axis=1)
print("Mean Absolute Error from dropping columns with Missing Values:")
print(score_dataset(reduced_X_train, reduced_X_test, y_train, y_test)) # Get Model Score from Imputation
# 插入值
from sklearn.impute import SimpleImputer my_imputer = SimpleImputer()
imputed_X_train = my_imputer.fit_transform(X_train)
imputed_X_test = my_imputer.transform(X_test)
print("Mean Absolute Error from Imputation:")
print(score_dataset(imputed_X_train, imputed_X_test, y_train, y_test)) # Get Score from Imputation with Extra Columns Showing What Was Imputed
# 添加额外列显示缺失值
imputed_X_train_plus = X_train.copy()
imputed_X_test_plus = X_test.copy() cols_with_missing = (col for col in X_train.columns
if X_train[col].isnull().any())
for col in cols_with_missing:
imputed_X_train_plus[col + '_was_missing'] = imputed_X_train_plus[col].isnull()
imputed_X_test_plus[col + '_was_missing'] = imputed_X_test_plus[col].isnull() # Imputation
my_imputer = SimpleImputer()
imputed_X_train_plus = my_imputer.fit_transform(imputed_X_train_plus)
imputed_X_test_plus = my_imputer.transform(imputed_X_test_plus) print("Mean Absolute Error from Imputation while Track What Was Imputed:")
print(score_dataset(imputed_X_train_plus, imputed_X_test_plus, y_train, y_test))
Handling Missing Values的更多相关文章
- [sklearn]官方例程-Imputing missing values before building an estimator 随机填充缺失值
官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot- ...
- [sklearn] 官方例程-Imputing missing values before building an estimator 随机填充缺失值
官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot- ...
- Multi-batch TMT reveals false positives, batch effects and missing values(解读人:胡丹丹)
文献名:Multi-batch TMT reveals false positives, batch effects and missing values (多批次TMT定量方法中对假阳性率,批次效应 ...
- 缺失值处理(Missing Values)
什么是缺失值?缺失值指数据集中某些变量的值有缺少的情况,缺失值也被称为NA(not available)值.在pandas里使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值 ...
- Web Scraping with R: How to Fill Missing Value (爬虫:如何处理缺失值)
网络上有大量的信息与数据.我们可以利用爬虫技术来获取这些巨大的数据资源. 这次用 IMDb 网站的2018年100部最欢迎的电影 来练练手,顺便总结一下 R 爬虫的方法. >> Prepa ...
- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON ...
- Kaggle:Home Credit Default Risk 特征工程构建及可视化(2)
博主在之前的博客 Kaggle:Home Credit Default Risk 数据探索及可视化(1) 中介绍了 Home Credit Default Risk 竞赛中一个优秀 kernel 关于 ...
- 【转】The most comprehensive Data Science learning plan for 2017
I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...
- data cleaning
Cleaning data in Python Table of Contents Set up environments Data analysis packages in Python Cle ...
随机推荐
- 使用 Vue.js 和 Chart.js 制作绚丽多彩的图表
本文作者:Jakub Juszczak 编译:胡子大哈 翻译原文:http://huziketang.com/blog/posts/detail?postId=58e5e0e1a58c240ae35b ...
- mac下解压bin文件
在mac下要解压Android-ndk-r10e-darwin-x86_64.bin文件. 1.进入文件所在目录,修改文件的读取权限 chmod a+x android-ndk-r10e-darwin ...
- CAS客户端配置
1. 导出证书 以上操作会在当前目录产生文件:ssodemo.crt(需要用到的文件请看CAS服务端配置那篇文章) 2. 客户端导入证书 以上操作会在jdk安装目录jre\lib\security下产 ...
- 同一个局域网内,使用 java 从服务器共享文件夹中复制文件到本地。
1 引用jar 包 <dependency> <groupId>org.samba.jcifs</groupId> <artifactId>jcifs& ...
- mysql查看执行计划重构后的查询
MYSQL优化器会对客服端发送的SQL语句进行优化,优化后的SQL语句再被MYSQL执行.然后我们在优化SQL的时候,怎么获取到MYSQL优化后执行语句呢. EXPLAIN select * from ...
- C++继承相关知识点总结
1:派生类继承基类的成员并且可以定义自己的附加成员.每个派生类对象包含两个部分:从基类继承的成员和自己定义的成员. 每个派生类对象都有基类部分,包括基类的private成员.类可以访问共基类的publ ...
- scrollLeft/scrollTop/scrollHeight
scrollHeight : It includes the element's padding, but not its border or margin.This property will ...
- Eclipse使用过程的常见问题:
3-1 "Failed to load the JNI shared library" -jdk 与eclipse位数不一致出现的问题 解决方法: ...
- 五、Hive-HBase接口表性能分析
设想: Hbase不支持join,不能做复杂统计类: Hive可以. Hive-hbase接口表岂不两全其美? 用户画像表有300个字段,每天都使用: 1.在业务系统里实时根据uid调取用户的画像信息 ...
- 关于mapreduce 开发环境部署和jar包拷贝问题
1.mapreduce开发应当在linux里面的eclipse不然容易出现问题. 2.把eclipse拷贝到linux环境中,然后需要拷贝hadoop-eclipse-plugin-2.3.0.jar ...