1) A Simple Option: Drop Columns with Missing Values

如果这些列具有有用信息(在未丢失的位置),则在删除列时,模型将失去对此信息的访问权限。 此外,如果您的测试数据在您的训练数据没有的地方缺少值,则会导致错误。

data_without_missing_values = original_data.dropna(axis=1)

#同时操作tran和test部分
cols_with_missing = [col for col in original_data.columns
if original_data[col].isnull().any()]
redued_original_data = original_data.drop(cols_with_missing, axis=1)
reduced_test_data = test_data.drop(cols_with_missing, axis=1)

2) A Better Option: Imputation

默认行为填写了插补的平均值。 统计学家已经研究了更复杂的策略,但是一旦将结果插入复杂的机器学习模型,那些复杂的策略通常没有任何好处。

关于Imputation的一个(很多)好处是它可以包含在scikit-learn Pipeline中。 管道简化了模型构建,模型验证和模型部署。

from sklearn.impute import SimpleImputer
my_imputer = SimpleImputer()
data_with_imputed_values = my_imputer.fit_transform(original_data)

3) An Extension To Imputation

估算是标准方法,通常效果很好。 但是,估算值可能系统地高于或低于其实际值(未在数据集中收集)。 或者具有缺失值的行可能以某种其他方式看来是唯一的。 在这种情况下,您的模型会通过考虑最初缺少哪些值来做出更好的预测。

# make copy to avoid changing original data (when Imputing)
new_data = original_data.copy() # make new columns indicating what will be imputed
cols_with_missing = (col for col in new_data.columns
if new_data[col].isnull().any())
for col in cols_with_missing:
new_data[col + '_was_missing'] = new_data[col].isnull() # Imputation
my_imputer = SimpleImputer()
new_data = pd.DataFrame(my_imputer.fit_transform(new_data))
new_data.columns = original_data.columns

Example (Comparing All Solutions)

import pandas as pd

# Load data
melb_data = pd.read_csv('../input/melbourne-housing-snapshot/melb_data.csv') from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split melb_target = melb_data.Price
melb_predictors = melb_data.drop(['Price'], axis=1) # For the sake of keeping the example simple, we'll use only numeric predictors.
melb_numeric_predictors = melb_predictors.select_dtypes(exclude=['object']) from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(melb_numeric_predictors,
melb_target,
train_size=0.7,
test_size=0.3,
random_state=0) def score_dataset(X_train, X_test, y_train, y_test):
model = RandomForestRegressor()
model.fit(X_train, y_train)
preds = model.predict(X_test)
return mean_absolute_error(y_test, preds) # Get Model Score from Dropping Columns with Missing Values
# 直接丢弃含有缺失值的列
cols_with_missing = [col for col in X_train.columns
if X_train[col].isnull().any()]
reduced_X_train = X_train.drop(cols_with_missing, axis=1)
reduced_X_test = X_test.drop(cols_with_missing, axis=1)
print("Mean Absolute Error from dropping columns with Missing Values:")
print(score_dataset(reduced_X_train, reduced_X_test, y_train, y_test)) # Get Model Score from Imputation
# 插入值
from sklearn.impute import SimpleImputer my_imputer = SimpleImputer()
imputed_X_train = my_imputer.fit_transform(X_train)
imputed_X_test = my_imputer.transform(X_test)
print("Mean Absolute Error from Imputation:")
print(score_dataset(imputed_X_train, imputed_X_test, y_train, y_test)) # Get Score from Imputation with Extra Columns Showing What Was Imputed
# 添加额外列显示缺失值
imputed_X_train_plus = X_train.copy()
imputed_X_test_plus = X_test.copy() cols_with_missing = (col for col in X_train.columns
if X_train[col].isnull().any())
for col in cols_with_missing:
imputed_X_train_plus[col + '_was_missing'] = imputed_X_train_plus[col].isnull()
imputed_X_test_plus[col + '_was_missing'] = imputed_X_test_plus[col].isnull() # Imputation
my_imputer = SimpleImputer()
imputed_X_train_plus = my_imputer.fit_transform(imputed_X_train_plus)
imputed_X_test_plus = my_imputer.transform(imputed_X_test_plus) print("Mean Absolute Error from Imputation while Track What Was Imputed:")
print(score_dataset(imputed_X_train_plus, imputed_X_test_plus, y_train, y_test))

Handling Missing Values的更多相关文章

  1. [sklearn]官方例程-Imputing missing values before building an estimator 随机填充缺失值

    官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot- ...

  2. [sklearn] 官方例程-Imputing missing values before building an estimator 随机填充缺失值

    官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot- ...

  3. Multi-batch TMT reveals false positives, batch effects and missing values(解读人:胡丹丹)

    文献名:Multi-batch TMT reveals false positives, batch effects and missing values (多批次TMT定量方法中对假阳性率,批次效应 ...

  4. 缺失值处理(Missing Values)

    什么是缺失值?缺失值指数据集中某些变量的值有缺少的情况,缺失值也被称为NA(not available)值.在pandas里使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值 ...

  5. Web Scraping with R: How to Fill Missing Value (爬虫:如何处理缺失值)

    网络上有大量的信息与数据.我们可以利用爬虫技术来获取这些巨大的数据资源. 这次用 IMDb 网站的2018年100部最欢迎的电影 来练练手,顺便总结一下 R 爬虫的方法. >> Prepa ...

  6. A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)

    A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON  ...

  7. Kaggle:Home Credit Default Risk 特征工程构建及可视化(2)

    博主在之前的博客 Kaggle:Home Credit Default Risk 数据探索及可视化(1) 中介绍了 Home Credit Default Risk 竞赛中一个优秀 kernel 关于 ...

  8. 【转】The most comprehensive Data Science learning plan for 2017

    I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...

  9. data cleaning

    Cleaning data in Python   Table of Contents Set up environments Data analysis packages in Python Cle ...

随机推荐

  1. django中的request对象

    Request 我们知道当URLconf文件匹配到用户输入的路径后,会调用对应的view函数,并将  HttpRequest对象  作为第一个参数传入该函数. 我们来看一看这个HttpRequest对 ...

  2. hibernate使用truncate清空表 截断表

    public void truncateTable(Session session, String tableNameInDb) { String sql = " truncate tabl ...

  3. 07_Hibernate多事务并发运行时并发问题检索方式

    什么是事务? 事务(Transaction)是并发控制的单位,是用户定义的一个操作序列.这些操作要么都做,要么都不做,是一个不可分割的工作单位. 事务就是逻辑上的一组操作,要么全都成功,要么全都失败 ...

  4. pycharm使用教程链接+部分练习题01

    pycharm安装: https://www.cnblogs.com/jin-xin/articles/9811379.html pycharm使用教程: https://edu.51cto.com/ ...

  5. Ubuntu安装QQ、微信、微信开发者工具、搜狗输入法

    wine 待补充……

  6. ElasticSearch入门之彼行我释(四)

    散仙在上篇文章中,介绍了关于ElasticSearch基本的增删改查的基本粒子,本篇呢,我们来学下稍微高级一点的知识: (1)如何在ElasticSearch中批量提交索引 ? (2)如何使用高级查询 ...

  7. Luogu P4782 【模板】2-SAT 问题(2-SAT)

    P4782 [模板]2-SAT 问题 题意 题目背景 \(2-SAT\)问题模板 题目描述 有\(n\)个布尔变量\(x_1\sim x_n\),另有\(m\)个需要满足的条件,每个条件的形式都是&q ...

  8. 唤起qqApp

    <a href="tencent://message/?uin=xxxxxxxxxxxxxx&Site=400301.com&Menu=yes">联系客 ...

  9. Ionic 生成icon图标

    1.直接切换到项目跟目录 运行以下命令 备注:运行第一次ionic rescoures 后自动生成文件夹rescoures ,让后帮你自己的icon.png 文件放进入就ok ,在次运行ionic r ...

  10. LUOGU P2280 [HNOI2003]激光炸弹

    传送门 解题思路 二维前缀和. 代码 #include<iostream> #include<cstdio> #include<cstring> using nam ...