说实话,这个题真好(?)

<BZOJ题面>

<LOJ题面>

看到这个题,一时没有思路

但是

我想到了一个错解:归并

这个题真的有一点把我们的思路往归并上引

于是WA10

诶?我归并写错了


以下是正解

DFS

我们会发现,这个题的

每一种操作,只能有一个

好办了

因为大的交换区间(我们暂且这么叫它)无法处理更小区间上的错位

而且,大的区间交换会改变小的交换的位置,这样如果我们找到一种可行方案(含$N$个操作)

这个方案解的全排列都可行,对答案的贡献就是$N!$

(有序:依次+1,如{1,2,3},其余情况无序)

所以DFS应从小往大进行,并且一边处理一边检测更小一段是否有序

处理完的区间必须有序,且每一次处理都不能超过一次

那么下面是处理的具体情况

发现在当前的区段,无序的有$k$个

$k=0$时,不需要交换(如果您非要交换那只能WA了)

$k=1$时,将无序区段整理有序

$k=2$时,将两段无序的区间进行整理,有四种情况,见下

$k \ge 3$时,当前操作无论如何也无法处理,返回

  • 在此之下是过于仔细的讲解了,只看题解的可以停了~(下面约为源码)

将$k=2$时的情况讨论:

用几个式子举例

1.两个外侧交换

  第一块的第一个子块与第二个的第一个子块相差$2^n$

  7 8 3 4 5 6 1 2 可以交换

  5 6 3 4 7 8 1 2 不行

2.两个内侧交换

  第一块的第一个子块与第二个的第二个子块相差$2^n$

  1 2 5 6 3 4 7 8 可以

  1 2 7 8 3 4 5 6 不行

3.一内一外交换

  第一块的第一个子块与第二个的第一个子块相差$2^n$

  第4种情况归在这里面,同样的判断条件即

  [1][3]交换[2][4]交换

  1 2 5 6 3 4 7 8 可以

  1 2 7 8 3 4 5 6 不行

总之记得把换过的判一下

源码:

其实以上判断用for循环都可以搞定,蒟蒻调出了if-else的正解

#include <iostream>
#include <cstring>
#include <cstdio> //#include "debug.h" #define LL long long
#define N (1<<12)+10 using namespace std; int arr[N],dat[N];
int pown[15],fac[15];
int n;
LL ans=0;
LL jc(int n){
LL j=1;
for(int i=2;i<=n;i++){
j*=i;
}
return j;
}
void sswap(int f1,int f2,int l){
//cout<<f1<<"<->"<<f2<<" len:"<<l<<endl;
for(int i=0;i<l;i++){
dat[f1+i]=arr[f1+i];
dat[f2+i]=arr[f2+i];
arr[f1+i]=dat[f2+i];
arr[f2+i]=dat[f1+i];
}
}
bool is_ok(){
for(int i=1;i<=pown[n];i++)
if(arr[i]!=i)return 0;
return 1;
}
void dfs(int k,int cn){//2^k
//cout<<"DFS"<<k<<"change number:"<<cn<<endl;
//debug<<"Now the array has been:"<<endl;
//pour(arr,1,pown[n],3,"Array");
if(is_ok()){
if(cn!=0)ans+=fac[cn];
return;
}
if(k>n)return ;
int ln=0;
for(int i=1;i<=pown[n];i+=pown[k]){
if(arr[i+pown[k-1]]!=arr[i]+pown[k-1]){
ln++;//cout<<"Find a Unordered part "<<i<<" Total: "<<ln<<endl;
}
}
if(ln==0){
dfs(k+1,cn);
}
else if(ln==1){
for(int i=1;i<=pown[n];i+=pown[k]){
if(arr[i+pown[k-1]]!=arr[i]+pown[k-1]){
sswap(i,i+pown[k-1],pown[k-1]);
dfs(k+1,cn+1);
sswap(i,i+pown[k-1],pown[k-1]);
break;
}
}
}
else if(ln==2){
int wz[2];
for(int i=1,j=0;i<=pown[n];i+=pown[k]){
if(arr[i+pown[k-1]]!=arr[i]+pown[k-1]){
wz[j]=i;
j++;
if(j==2)break;
}
}
//debug<<"wz1 "<<wz[0]<<" wz2 "<<wz[1]<<" pown" <<pown[k-1]<<endl;
//debug<<"init:"<<arr[wz[0]]<<" "<<arr[wz[1]]<<NL;
if(arr[wz[0]]+pown[k-1] == arr[wz[1]]){//换中间的
if(arr[wz[0]+pown[k-1]]+pown[k-1] != arr[wz[1]+pown[k-1]])//换后的后面
return;
sswap(wz[0]+pown[k-1],wz[1],pown[k-1]);
dfs(k+1,cn+1);
sswap(wz[0]+pown[k-1],wz[1],pown[k-1]);
}
else if(arr[wz[1]+pown[k-1]] + pown[k-1] == arr[wz[0]+pown[k-1]]){//换两边的
if(arr[wz[1]]+pown[k-1] != arr[wz[0]])//换后的后面
return ;
sswap(wz[0],wz[1]+pown[k-1],pown[k-1]);
dfs(k+1,cn+1);
sswap(wz[0],wz[1]+pown[k-1],pown[k-1]);
}
else if(arr[wz[0]]+pown[k-1] == arr[wz[1]+pown[k-1]]){
if(arr[wz[0]+pown[k-1]] != arr[wz[1]]+pown[k-1])//换后如果不成立
return;
sswap(wz[0]+pown[k-1],wz[1]+pown[k-1],pown[k-1]);//换后面的两个
dfs(k+1,cn+1);
sswap(wz[0]+pown[k-1],wz[1]+pown[k-1],pown[k-1]);
sswap(wz[0],wz[1],pown[k-1]);//换前面的两个
dfs(k+1,cn+1);
sswap(wz[0],wz[1],pown[k-1]);
}
else return ;
}
else return;
}
int prerun(){
pown[0]=1;fac[0]=1;
for(int i=1;i<=14;i++){
pown[i]=pown[i-1]*2;
fac[i]=fac[i-1]*i;
}
//pour(pown,1,14,5,"Pow");
//pour(fac ,1,14,5,"fac");
}
int main(){
prerun();
scanf("%d",&n);
for(int i=1;i<=pown[n];i++)
scanf("%d",&arr[i]);
dfs(1,0);
cout<<ans<<endl;
}

[BZOJ3990][SDOI2015][LOJ#2181]-排序的更多相关文章

  1. [BZOJ3990][SDOI2015]排序(DFS)

    3990: [SDOI2015]排序 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 902  Solved: 463[Submit][Status][ ...

  2. Bzoj3990 [SDOI2015]排序

    Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 651  Solved: 338 Description 小A有一个1-2^N的排列A[1..2^N], ...

  3. [bzoj3990][SDOI2015]排序-搜索

    Brief Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<= ...

  4. BZOJ3990 [SDOI2015]排序 【搜索】

    题目 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中操作为将序列从左到 ...

  5. [BZOJ3990]:[SDOI2015]排序(搜索)

    题目传送门 题目描述 小A有一个1-${2}^{N}$的排列A[1..${2}^{N}$],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1≤i≤N), ...

  6. [暑假的bzoj刷水记录]

    (这篇我就不信有网站来扣) 这个暑假打算刷刷题啥的 但是写博客好累啊  堆一起算了 隔一段更新一下.  7月27号之前刷的的就不写了 , 写的累 代码不贴了,可以找我要啊.. 2017.8.27upd ...

  7. AHOI2018训练日程(3.10~4.12)

    (总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) ...

  8. 【LOJ】#2181. 「SDOI2015」排序

    题解 还以为是啥毒瘤题 然后是个搜索题 复杂度算起来挺大 然后跑起来就连0.1ms不到= = 就是从大到小进行每种操作,搜出来一种操作就乘上一个操作数的阶乘就行 如果现在进行的操作操作\(2^i\)那 ...

  9. BZOJ3990:[SDOI2015]排序——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3990 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作 ...

随机推荐

  1. 【学术篇】NOIP2016 D1T3 luogu1850换教室

    题目链接:点击这里献出你宝贵的时间(是用来做题不是捐赠Emmmm).. Emmmm我太弱了= = 做完这题我觉得我应该去打星际..这题怎么就有重边了呢.. 这题就是一道期望= =当时考场上好像完全不会 ...

  2. Python全栈开发:线程、进程和协程

    Python线程 Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #!/usr/bin/env pytho ...

  3. bzoj4144 Petrol

    题意:给你一张n个点m条边的带权无向图.其中由s个点是加油站.询问从x加油站到y加油站,油箱容量<=b,能否走到? n,m,q,s<=20W,b<=2e9. 标程: #include ...

  4. C++萃取技术的一个简单初探

    首先本文并不是讲解C++萃取技术,关于C++的萃取技术网上有很多文章,推荐http://www.cppblog.com/woaidongmao/archive/2008/11/09/66387.htm ...

  5. 【Uva 10003】Cutting Sticks

    [Link]: [Description] 给你一根长度为l的棍子; 然后有n个切割点; 要求在每个切割点都要切割一下; 这样,最后就能形成n+1根小棍子了; 问你怎样切割,消耗的体力最小; 认为,消 ...

  6. CobaltStrike进阶篇-批量上线

    前言 当获取一台目标服务器权限时,更多是想办法扩大战果,获取目标凭据并横向进行登陆是最快速的拿权方式.但目标所处环境是否可出网,如何利用CobalStrike进行批量上线,正是本文所要讲述的内容. 获 ...

  7. 版本控制git之三-多人协作 变基 推送 拉取 删除远程分支

      版本控制git之三-多人协作 wangfeng7399已关注0人评论350人阅读2019-02-20 21:33:08   如果你想获得一份已经存在了的 Git 仓库的拷贝,比如说,你想为某个开源 ...

  8. PAT甲级——A1093 Count PAT's【25】

    The string APPAPT contains two PAT's as substrings. The first one is formed by the 2nd, the 4th, and ...

  9. PAT甲级——A1004 Counting Leaves

    A family hierarchy is usually presented by a pedigree tree. Your job is to count those family member ...

  10. vue 关闭微信浏览器(返回路由为undefined时)

    参考:https://blog.csdn.net/KingJin_CSDN_/article/details/77050569 main.js: import router from './route ...