梯度下降法实现-python[转载]
转自:https://www.jianshu.com/p/c7e642877b0e
梯度下降法,思想及代码解读。
import numpy as np # Size of the points dataset.
m = 20 # Points x-coordinate and dummy value (x0, x1).
X0 = np.ones((m, 1))#返回一个m行1列的矩阵
X1 = np.arange(1, m+1).reshape(m, 1)#相当于是转置了
X = np.hstack((X0, X1))#要求行数必须相同 # Points y-coordinate
y = np.array([
3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12,
11, 13, 13, 16, 17, 18, 17, 19, 21
]).reshape(m, 1) # The Learning Rate alpha.
alpha = 0.01 def error_function(theta, X, y):
'''Error function J definition.'''#定义损失函数
diff = np.dot(X, theta) - y #m行1列的列向量
return (1./2*m) * np.dot(np.transpose(diff), diff) def gradient_function(theta, X, y):
'''Gradient of the function J definition.'''#定义梯度函数
diff = np.dot(X, theta) - y
return (1./m) * np.dot(np.transpose(X), diff) def gradient_descent(X, y, alpha):
'''Perform gradient descent.'''
theta = np.array([1, 1]).reshape(2, 1)
gradient = gradient_function(theta, X, y)
while not np.all(np.absolute(gradient) <= 1e-5):
theta = theta - alpha * gradient
gradient = gradient_function(theta, X, y)
return theta optimal = gradient_descent(X, y, alpha)
print('optimal:', optimal)
print('error function:', error_function(optimal, X, y)[0,0])
梯度的方向即函数上升最快的方向。而加上负号表示朝着相反的方向前进。

初学python语法解读:
1.numpy.ones(shape,dataType,order='C')
其中shape=一个int数或者一个int数序列。dataType一般不选吧,可选的是np.int或者np.float。order:是否将多维数据存储在存储器中的C或FORTRAN连续(行或列)顺序中。(order一般编程不用考虑吧)
栗子1:x=np.ones((3,2))
print(x) 输出:
[[1. 1.]
[1. 1.]
[1. 1.]]#输出全为1的float型的吧。
栗子2:x=np.ones(3)
print(x)
输出:
[1. 1. 1.] #也就是说只有一个int的时候输入就是行向量,输入的int表示有几列。
2.numpy.arange([start,]stop,[step,]dataType=None)
start就是开始,stop是结束。用[]括起来的意思是可选的,不是非必需的参数。step默认是1.关于dataType如果没有指定则和输入的数据类型一致。
#注意这个函数不是arrange,是a range合起来。范围是左闭右开。最后输出的是一个数组,行向量,返回ndarray。
x=np.arange(3)
print(x) #output[0 1 2]
x=np.arange(1,3,0.5)
print(x) #output:[1. 1.5 2. 2.5]
3.np.ndarray.reshape(shape,order='C')
对ndarray返回一个shape型的矩阵。
m=3
X1 = np.arange(1, m+1).reshape(m, 1)#变成一个3行一列的列向量
print(X1) 输出:
[[1]
[2]
[3]]
4.np.hstack(tup)
就是将两个相同形状的矩阵在列上水平方向上合并起来。
a=np.array([[1,2],[3,4]])
b=np.array([[5,6],[7,8]])
c=np.hstack((a,b))
print(c)
#a,b是两行两列的矩阵,在水平方向上合并,在行上合并,即水平方向上。
输出:
[[1 2 5 6]
[3 4 7 8]]
5.np.dot(a,b,out=None)
对于二维的来说就是矩阵a,b的乘积,对于一维来说就是向量的内积。
a = [[1, 0], [0, 1]]
b=[[4, 1], [2, 2]]
print(np.dot(a,b)) 输出:
[[4 1]
[2 2]]
6.np.transpose(a,axis=None)
顾名思义就是转置矩阵。
a = np.arange(4).reshape((2,2))
print(np.transpose(a)) 输出:
[[0 2]
[1 3]]
梯度下降法实现-python[转载]的更多相关文章
- 梯度下降法的python代码实现(多元线性回归)
梯度下降法的python代码实现(多元线性回归最小化损失函数) 1.梯度下降法主要用来最小化损失函数,是一种比较常用的最优化方法,其具体包含了以下两种不同的方式:批量梯度下降法(沿着梯度变化最快的方向 ...
- (转)梯度下降法及其Python实现
梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前 ...
- 固定学习率梯度下降法的Python实现方案
应用场景 优化算法经常被使用在各种组合优化问题中.我们可以假定待优化的函数对象\(f(x)\)是一个黑盒,我们可以给这个黑盒输入一些参数\(x_0, x_1, ...\),然后这个黑盒会给我们返回其计 ...
- paper 166:梯度下降法及其Python实现
参考来源:https://blog.csdn.net/yhao2014/article/details/51554910 梯度下降法(gradient descent),又名最速下降法(steepes ...
- 简单线性回归(梯度下降法) python实现
grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...
- Gradient Descent 梯度下降法-R实现
梯度下降法: [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 应用:求线性回归方程的系数 目标:最小化损失 ...
- 梯度下降法VS随机梯度下降法 (Python的实现)
# -*- coding: cp936 -*- import numpy as np from scipy import stats import matplotlib.pyplot as plt # ...
- 梯度下降法原理与python实现
梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离 ...
- 最小二乘法 及 梯度下降法 运行结果对比(Python版)
上周在实验室里师姐说了这么一个问题,对于线性回归问题,最小二乘法和梯度下降方法所求得的权重值是一致的,对此我颇有不同观点.如果说这两个解决问题的方法的等价性的确可以根据数学公式来证明,但是很明显的这个 ...
随机推荐
- CASE:DB shutdown/open 过程中发生异常导致JOB不能自动执行
CASE:DB shutdown/open 过程中发生异常导致JOB不能自动执行 现象: 一个DB中的所有JOB在3月25日之后就不再自动运行,查询DBA_JOBS,发现LAST_DATE定格在3月2 ...
- spring基础---->请求与响应的参数(一)
这里面我们主要介绍一下spring中关于请求和响应参数数据的问题.爱,从来就是一件千回百转的事.不曾被离弃,不曾受伤害,怎懂得爱人?爱,原来是一种经历. spring中的请求与响应 一.spring中 ...
- Makefile 中all 和.PHONY的作用
请编写一个makefile同时编译.链接下面两个程序: main1.c: #include<stdio.h> int main(void) { printf("main1\n&q ...
- git 命令自动补全
下载 Git 的源代码 使用如下命令即可下载: git clone https://github.com/git/git 复制 git-completion.bash 源代码下有个 contrib/c ...
- Spring.NET依赖注入框架学习-- 泛型对象的创建和使用
Spring.NET依赖注入框架学习-- 泛型对象的创建和使用 泛型对象的创建方法和普通对象是一样的. 通过构造器创建泛型对象 下面是一个泛型类的代码: namespace GenericsPlay ...
- 改变vux样式
场景:修改 x-header 颜色 解决: 在创建文件路径如下 src/assets/less/theme.less ; 在build/webpack.base.conf.js下添加 这两行即可
- LeetCode 81 Search in Rotated Sorted Array II(循环有序数组中的查找问题)
题目链接:https://leetcode.com/problems/search-in-rotated-sorted-array-ii/#/description 姊妹篇:http://www. ...
- 2015.7.7js-07-2(基础)
1.用求模来计算时间,秒%60,就能获取剩余的秒 var s = 362; var minute = parseInt(s/60) + "分" //取得分 var second = ...
- pycharm 里面引用pymysql
import pymysql db =pymysql.connect(host ='192.168.1.131',port=3306,user='jack',password ='jack',db = ...
- Jenkins-Build Monitor View
现在上了jenkins的任务越来越多,查看起来很不方便,想搞个大视图,刚好jenkins本身支持这个功能. 功能: 一个独特的View, 可以将指定的Job,显示出来,当Job很多时,效果很好看 下载 ...