CodeForces - 965D Single-use Stones
如果你强行把问题建模,可以发现这是一个裸的增广路,又因为这是区间连边,所以跑一个 点数O(N)边数O(N log N)的线段树优化建边的网络流即可,不知道能不能过23333
但其实这个问题非常简单,因为在每个位置跳的能力都是一样的,所以完全可以不用 在每个位置跳的能力不同依然可以做的网络流。
可以发现答案的上界就是所有长度为l的区间内的a[]的和的最小值,为什么呢?
考虑任意一个长度为 l 的区间,每个青蛙都要至少跳到这里面一次,只有每个青蛙都恰好只跳到这里面一次答案才是 这个区间内a[]的和,所以答案不可能再大了。
并且我们是可以构造一个贴上界的解的。
先考虑把a[]的和最小的区间填满,然后向后移的时候,只需要贪心的把每个青蛙向后移即可,肯定保证有解、、
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=100005; int n,a[N],ans=1e9,l; int main(){
scanf("%d%d",&n,&l);
for(int i=1,now=0;i<n;i++){
scanf("%d",a+i),now+=a[i];
if(i>=l){ ans=min(ans,now),now-=a[i-l+1];}
}
printf("%d\n",ans);
return 0;
}
CodeForces - 965D Single-use Stones的更多相关文章
- Codeforces 965 D. Single-use Stones(思维)
Codeforces 965 D. Single-use Stones 题目大意: 有一条河宽度为w,河上有一些石头,给出一组数(编号1~w-1),其中a[i]代表与河一岸距离为i的石头数量.每只青蛙 ...
- Single-use Stones Codeforces - 965D
https://codeforces.com/contest/965/problem/D 太神仙了...比E难啊.. 首先呢,根据题意,可以很容易的建出一个最大流模型 就是每个位置建一条边,容量限制为 ...
- 【Codeforces 1110E】Magic Stones
Codeforces 1110 E 题意:给定两个数组,从第一个数组开始,每次可以挑选一个数,把它变化成左右两数之和减去原来的数,问是否可以将第一个数组转化成第二个. 思路: 结论:两个数组可以互相转 ...
- codeforces 768E Game of Stones
题目链接:http://codeforces.com/problemset/problem/768/E NIM游戏改版:对于任意一堆,拿掉某个次数最多只能一次. 对于一堆石头数量为$X$.找到一个最小 ...
- CodeForces 768E Game of Stones 打表找规律
题意: 在经典Nim博弈的基础上增加了新的限制:如果从这堆石子中移走\(x\)个石子,那么之后就不能再从这堆移走\(x\)个. 分析: 因为之前的操作会对后面的转移有影响,所以在保存状态时还要记录哪些 ...
- 「日常训练」Single-use Stones (CFR476D2D)
题意(Codeforces 965D) $w$表示河的宽度,$l$表示青蛙所能跳的最远的距离,第二行的$w-1$个元素表示离河岸为$i$的地方有$a[i]$个石头,一个石头被踩两次,问最多有多少只青蛙 ...
- Codeforces 1023 A.Single Wildcard Pattern Matching-匹配字符 (Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Fi)
Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) A. Single Wildcard Patter ...
- Codeforces 768 E. Game of Stones 博弈DP
E. Game of Stones Sam has been teaching Jon the Game of Stones to sharpen his mind and help him de ...
- 动态规划,而已! CodeForces 433B - Kuriyama Mirai's Stones
Kuriyama Mirai has killed many monsters and got many (namely n) stones. She numbers the stones from ...
随机推荐
- 课下加分项目 MYPWD 20155335 俞昆
Mypwd 的解读与实现 20155335 linux下pwd命令的编写 实验要求: 1 .学习pwd命令 2 . 研究pwd实现需要的系统调用(man -k; grep),写出伪代码 3 .实现my ...
- 苹果API常用英语名词---iOS-Apple苹果官方文档翻译
本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 苹果API常用英语名词0. indicating 决定1.in order to 以便 ...
- vue中的表单异步校验方法封装
在vue项目的开发中,表单的验证必不可少,在开发的过程中,用的是vue+iview的一套,我们知道iview的表单验证是基于async-validator,对于async-validator不熟悉的可 ...
- CSS浮动为什么不会遮盖同级元素
1.问题描述 在W3CSchool学习web前端时,看完CSS定位-浮动这一节后,感觉没有什么问题.但是在CSS高级-分类这一节的中进行实践时,遇到了如下问题.测试地址:浮动的简单应用. 完整的htm ...
- python作业三级菜单day1(第一周)
一.作业需求: 1. 运行程序输出第一级菜单 2. 选择一级菜单某项,输出二级菜单,同理输出三级菜单 3. 菜单数据保存在文件中 4. 让用户选择是否要退出 5. 有返回上一级菜单的功能 二三级菜单文 ...
- 分布式实时日志分析解决方案ELK部署架构
一.概述 ELK 已经成为目前最流行的集中式日志解决方案,它主要是由Beats.Logstash.Elasticsearch.Kibana等组件组成,来共同完成实时日志的收集,存储,展示等一站式的解决 ...
- 转 TCP中的序号和确认号
在网络分析中,读懂TCP序列号和确认号在的变化趋势,可以帮助我们学习TCP协议以及排查通讯故障,如通过查看序列号和确认号可以确定数据传输是否乱 序.但我在查阅了当前很多资料后发现,它们大多只简单介绍了 ...
- ShellCode的几种调用方法
ShellCode是一种漏洞代码,中文名也叫填充数据,一般是用C语言或者汇编编写.在研究的过程中,自己也学到了一些东西,发现其中也有许多坑,所以贴出来,如果大家有碰到的,可以参考一下. 以启动电脑上的 ...
- Mac OSX下Appium驱动iPhone真机
1.安装Xcode.Command Line Tools和Appium. 2.安装brew:/usr/bin/ruby -e "$(curl -fsSL https://raw.github ...
- 关于JqueryEasyUI插件—Tab,默认选中某个面板 如果不明显指定的话,第一个就是被选中的
如果不明显指定的话,第一个就是被选中的,你可以通过data-options="selected:true"指定默认选中