【Bzoj4555】【Luogu P4091】求和(NTT)
题面
题解
先来颓柿子
$$ \sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj! \\ =\sum_{j=0}^n2^jj!\sum_{i=0}^nS(i,j) \\ \because S(n, m)=\frac1{m!}\sum_{i=0}^m(-1)^i\binom{m}{i}(m-i)^n=\sum_{i=0}^m\frac{(-1)^i}{i!}\frac{(m-i)^n}{(m-i)!} \\ \therefore=\sum_{j=0}^n2^jj!\sum_{i=0}^n\sum_{k=0}^{j}\frac{(-1)^k}{k!}\frac{(j-k)^i}{(j-k)!} \\ =\sum_{j=0}^n2^jj!\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{\sum_{i=0}^n(j-k)^i}{(j-k)!} \\ =\sum_{j=0}^n2^jj!\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{(j-k)^{n+1}-1}{(j-k-1)(j-k)!} $$
然后后面那一大坨可以看做卷积,因为要取模,$NTT$就好了。
#include <cstdio>
#include <algorithm>
using std::swap;
const int N = 2.7e5 + 10, Mod = 998244353, g = 3;
int n, m, P, jc[N], pow2[N], invjc[N];
int a[N], b[N], r[N], ret;
int qpow(int a, int b) {
int ret = 1;
while(b) {
if(b & 1) ret = 1ll * ret * a % Mod;
a = 1ll * a * a % Mod, b >>= 1;
} return ret;
}
void NTT (int f[], int opt) {
for(int i = 0; i < n; ++i) if(i < r[i]) swap(f[i], f[r[i]]);
for(int len = 1, nl = 2; len < n; len = nl, nl <<= 1) {
int rot = qpow(g, (Mod - 1) / nl);
if(opt == -1) rot = qpow(rot, Mod - 2);
for(int l = 0; l < n; l += nl) {
int w = 1, r = l + len;
for(int k = l; k < r; ++k, w = 1ll * w * rot % Mod) {
int x = f[k], y = 1ll * f[k + len] * w % Mod;
f[k] = (x + y) % Mod, f[k + len] = (x + Mod - y) % Mod;
}
}
}
}
int main () {
scanf("%d", &n), jc[0] = pow2[0] = invjc[0] = b[0] = 1, b[1] = n + 1;
for(int i = 1; i <= n; ++i)
jc[i] = 1ll * jc[i - 1] * i % Mod, pow2[i] = (pow2[i - 1] << 1) % Mod;
invjc[n] = qpow(jc[n], Mod - 2);
for(int i = n - 1; i; --i) invjc[i] = 1ll * invjc[i + 1] * (i + 1) % Mod;
for(int i = 0; i <= n; ++i) a[i] = 1ll * invjc[i] * (i & 1 ? Mod - 1 : 1) % Mod;
for(int i = 2; i <= n; ++i)
b[i] = 1ll * (qpow(i, n + 1) + Mod - 1) % Mod * qpow(i - 1, Mod - 2) % Mod * invjc[i] % Mod;
for(m = n << 1, n = 1; n <= m; n <<= 1, ++P);
for(int i = 0; i < n; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (P - 1));
NTT(a, 1), NTT(b, 1);
for(int i = 0; i < n; ++i) a[i] = 1ll * a[i] * b[i] % Mod;
NTT(a, -1); int invn = qpow(n, Mod - 2);
for(int i = 0; i <= n; ++i)
ret = (ret + 1ll * pow2[i] * jc[i] % Mod * a[i] % Mod * invn % Mod) % Mod;
printf("%d\n", ret);
return 0;
}
【Bzoj4555】【Luogu P4091】求和(NTT)的更多相关文章
- [BZOJ4555 TJOI2016 HEOI2016 求和]
第一篇博客,请大家多多关照.(鞠躬 BZOJ4555 TJOI2016 HEOI2016 求和 题意: 给定一个正整数\(n\)(\(1\leqq n \leqq100000\)),求: \[ ...
- loj2058 「TJOI / HEOI2016」求和 NTT
loj2058 「TJOI / HEOI2016」求和 NTT 链接 loj 思路 \[S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k ...
- BZOJ 4555 Luogu P4091 [HEOI2016/TJOI2016]求和 (第二类斯特林数)
题目链接 (luogu) https://www.luogu.org/problem/P4091 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...
- 【bzoj4555】[Tjoi2016&Heoi2016]求和 NTT
题目描述 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) ...
- 【题解】Luogu P4091 [HEOI2016/TJOI2016]求和
原题传送门 \[\begin{aligned} a n s &=\sum_{i=0}^{n} \sum_{j=0}^{i}\left\{\begin{array}{c}{i} \\ {j}\e ...
- luogu P4091 [HEOI2016/TJOI2016]求和
传送门 这一类题都要考虑推式子 首先,原式为\[f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)*2^j*j!\] 可以看成\[f(n)=\sum_{j=0}^{n}2^ ...
- BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】
题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...
- BZOJ4555 HEOI2016/TJOI2016求和(NTT+斯特林数)
S(i,j)=Σ(-1)j-k(1/j!)·C(j,k)·ki=Σ(-1)j-k·ki/k!/(j-k)!.原式=ΣΣ(-1)j-k·ki·2j·j!/k!/(j-k)! (i,j=0~n).可以发现 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 (NTT + 第二类斯特林数)
题意 给你一个数 \(n\) 求这样一个函数的值 : \[\displaystyle f(n)=\sum_{i=0}^{n}\sum_{j=0}^{i} \begin{Bmatrix} i \\ j ...
随机推荐
- redis linux下的环境搭建
系统 CentOS7 Redis 官网下载 https://redis.io/download 1.下载解压 [root@TestServer-DFJR programs]# /usr/loca ...
- 在不安装Windows服务的情况下,如何进行调试或测试
最近由于项目需要,写了几个Windows服务,可是如何对其进行测试呢? 如果通过命令Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe ...
- Java堆内存Heap与非堆内存Non-Heap
堆(Heap)和非堆(Non-heap)内存 按照官方的说法:“Java 虚拟机具有一个堆,堆是运行时数据区域,所有类实例和数组的内存均从此处分配.堆是在 Java 虚拟机启动时创建的.”“在 ...
- lua滚动文字效果
基本的思想都是创建一个clippingNode,将要截取的节点添加到clippingNode中,节点加上action即可. 下面是左右滚动的代码,如果是上下滚动,更简单了,只需修改Y坐标即可,都不用动 ...
- 暑假集训——cf热身赛部分题有感加其题解
刚刚开始集训,集训队队长暂时还没有拉专题,而是拉了部分codeforces上过题人数在2000左右的题组成了一场热身赛(其实就是一场练习),花了一天时间终于把它刷完了,其中很多题让我学到了很多骚操作, ...
- 工程化管理--maven
mavne模型 可以看出 maven构件都是由插件支撑的 maven的插件位置在:F:\MavenRepository\org\apache\maven\plugins Maven仓库布局 本地仓库 ...
- Fiddler-- 安装HTTPs证书
1. 现在很多带有比较重要信息的接口都使用了安全性更高的HTTPS,而Fiddler默认是抓取HTTP类型的接口,要想查看HTTPS类型接口就需要安装fiddler证书. 2.打开Fiddler, ...
- 2017-2018-1 20179205《Linux内核原理与设计》第六周作业
<Linux内核原理与设计> 视频学习及操作 给MenuOS增加time和time-asm命令的方法: 1.更新menu代码到最新版 rm menu -rf //强制删除menu, rm ...
- Python参数输入模块-optparse
废话: 模块名是optparse, 很多人打成optparser.以至于我一直导入导入不了.搞的不知所以. 模块的使用: import optparse #usage 定义的是使用方法,%prog 表 ...
- css position的值
值 描述 absolute 生成绝对定位的元素,相对于 static 定位以外的第一个父元素进行定位. 元素的位置通过 "left", "top", " ...