hdu 3836 Equivalent Sets(强连通分量--加边)
Equivalent Sets
Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Others)
Total Submission(s): 2798 Accepted Submission(s): 962
You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
Now you want to know the minimum steps needed to get the problem proved.
Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
4 0
3 2
1 2
1 3
4
2HintCase 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
求将原图的强连通分量缩点,得到有向无环图,求至少加多少条边能够使这个图变成一幅强连通图,max(入度为0的点,出度为0的点)即为答案。
#include"stdio.h"
#include"string.h"
#include"queue"
#include"vector"
#include"algorithm"
using namespace std;
#define N 20005
#define M 50005
#define min(a,b) (a<b?a:b)
const int inf=1000000;
struct node
{
int u,v,next;
}e[M];
int t,bcnt,index,stop,ans;
int head[N],dfn[N],low[N],stap[N],mark[N],be[N];
int indeg[N],out[N];
void add(int u,int v)
{
e[t].u=u;
e[t].v=v;
e[t].next=head[u];
head[u]=t++;
}
void tarjan(int u)
{
int i,v;
dfn[u]=low[u]=++index;
stap[++stop]=u;
mark[u]=1;
for(i=head[u];i!=-1;i=e[i].next)
{
v=e[i].v;
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(mark[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
bcnt++;
do
{
v=stap[stop--];
mark[v]=0;
be[v]=bcnt;
}
while(u!=v);
ans++;
}
}
void solve(int n)
{
int i;
memset(dfn,0,sizeof(dfn));
index=stop=bcnt=0;
for(i=1;i<=n;i++)
{
if(!dfn[i])
tarjan(i);
}
}
void work(int n)
{
int i,j,u,v,t1,t2;
memset(indeg,0,sizeof(indeg));
memset(out,0,sizeof(out));
for(i=1;i<=n;i++)
{
u=be[i];
for(j=head[i];j!=-1;j=e[j].next)
{
v=be[e[j].v];
if(u!=v)
{
indeg[v]++;
out[u]++;
}
}
}
t1=t2=0;
for(i=1;i<=bcnt;i++)
{
if(indeg[i]==0)
t1++;
if(out[i]==0)
t2++;
}
printf("%d\n",t1>t2?t1:t2);
}
int main()
{
int n,m,u,v;
while(scanf("%d%d",&n,&m)!=-1)
{
t=0;
memset(head,-1,sizeof(head));
while(m--)
{
scanf("%d%d",&u,&v);
add(u,v);
}
ans=0;
solve(n);
// printf("%d\n",ans);
if(ans==1)
printf("0\n");
else
work(n);
}
return 0;
}
hdu 3836 Equivalent Sets(强连通分量--加边)的更多相关文章
- HDU - 3836 Equivalent Sets (强连通分量+DAG)
题目大意:给出N个点,M条边.要求你加入最少的边,使得这个图变成强连通分量 解题思路:先找出全部的强连通分量和桥,将强连通分量缩点.桥作为连线,就形成了DAG了 这题被坑了.用了G++交的,结果一直R ...
- hdu - 3836 Equivalent Sets(强连通)
http://acm.hdu.edu.cn/showproblem.php?pid=3836 判断至少需要加几条边才能使图变成强连通 把图缩点之后统计入度为0的点和出度为0的点,然后两者中的最大值就是 ...
- [tarjan] hdu 3836 Equivalent Sets
主题链接: http://acm.hdu.edu.cn/showproblem.php? pid=3836 Equivalent Sets Time Limit: 12000/4000 MS (Jav ...
- hdu 3836 Equivalent Sets
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3836 Equivalent Sets Description To prove two sets A ...
- hdu——3836 Equivalent Sets
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu 3836 Equivalent Sets(tarjan+缩点)
Problem Description To prove two sets A and B are equivalent, we can first prove A is a subset of B, ...
- hdu 3836 Equivalent Sets trajan缩点
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu 3836 tarjain 求强连通分量个数
// 给你一个有向图,问你最少加几条边能使得该图强连通 #include <iostream> #include <cstdio> #include <cstring&g ...
- hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
随机推荐
- SQL Server 根据表名取得 表主键
exec sp_primary_keys_rowset N'表名',NULL
- LeetCode——3Sum & 3Sum Closest
3Sum 题目 Given an array S of n integers, are there elements a,b,c in S such that a + b + c = 0? Find ...
- Android面试,简要介绍一下asynctask和handler的优缺点
1 )AsyncTask实现的原理,和适用的优缺点 AsyncTask,是android提供的轻量级的异步类,可以直接继承AsyncTask,在类中实现异步操作,并提供接口反馈当前异步执行的程度(可以 ...
- JAVA基础(10)——IO、NIO
转载:http://blog.csdn.net/weitry/article/details/52964948 JAVA基础系列规划: JAVA基础(1)——基本概念 JAVA基础(2)——数据类型 ...
- C++ STL中Map的按Value排序
那么我们如何实现对pair按value进行比较呢? 第一种:是最原始的方法,写一个比较函数: 第二种:刚才用到了,写一个函数对象.这两种方式实现起来都比较简单. typedef pair<st ...
- 苹果通知推送服务(APNS)关键特性摘要
1. If APNs attempts to deliver a notification but the device is offline, the notification is stored ...
- maven的profile 目录、变量打包
<project> <build> <finalName>maven-project</finalName> <resources> < ...
- unity3d为对象添加脚本的两种方法
首先添加一个物体,然后新建一个C#脚本.接下去有两种方法把C#脚本与物体绑定. 1.在类声明上方添加如下代码: [AddComponentMenu("a/b")] 这句话表示在该物 ...
- C#指南,重温基础,展望远方!(2)程序结构
C# 中的关键组织结构概念包括程序.命名空间.类型.成员和程序集. C# 程序由一个或多个源文件组成. 程序声明类型,而类型则包含成员,并被整理到命名空间中. 类型示例包括类和接口. 成员示例包括字段 ...
- Vmware虚拟机三种网络模式详解(转)
原文来自http://note.youdao.com/share/web/file.html?id=236896997b6ffbaa8e0d92eacd13abbf&type=note 我怕链 ...