化简一下那个方差得到:$$\sqrt\frac{(\Sigma_{i=1}^nx_i)-n\bar x^2}{n}$$

除了$\Sigma_{i=1}^nx_i$这部分未知,其余已知,而那部分显然越大越好,很容易用DP去转移求得。

  • dp[n][x1][y1][x2][y2]表示当前要切的矩形是(x1,y1,x2,y2)且还需要切n刀得到的最大的那部分的值
  • 通过横竖切来转移,用记忆化搜索很容易实现

WA了好多发,听说有精度问题,一直搞精度,原来一个地方是爆int了。。

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF (1<<29)
int d[][][][][];
int a[][];
int calc(int x1,int y1,int x2,int y2){
int res=;
for(int i=x1; i<=x2; ++i){
for(int j=y1; j<=y2; ++j) res+=a[i][j];
}
return res;
}
int dp(int k,int x1,int y1,int x2,int y2){
if(d[k][x1][y1][x2][y2]!=-) return d[k][x1][y1][x2][y2];
if(k==) return d[k][x1][y1][x2][y2]=calc(x1,y1,x2,y2)*calc(x1,y1,x2,y2);
int res=INF;
for(int i=x1; i<x2; ++i){
res=min(res,dp(k-,x1,y1,i,y2)+calc(i+,y1,x2,y2)*calc(i+,y1,x2,y2));
res=min(res,dp(k-,i+,y1,x2,y2)+calc(x1,y1,i,y2)*calc(x1,y1,i,y2));
}
for(int i=y1; i<y2; ++i){
res=min(res,dp(k-,x1,y1,x2,i)+calc(x1,i+,x2,y2)*calc(x1,i+,x2,y2));
res=min(res,dp(k-,x1,i+,x2,y2)+calc(x1,y1,x2,i)*calc(x1,y1,x2,i));
}
return d[k][x1][y1][x2][y2]=res;
}
int main(){
memset(d,-,sizeof(d));
int n;
scanf("%d",&n);
int sum=;
for(int i=; i<; ++i){
for(int j=; j<; ++j) scanf("%d",&a[i][j]),sum+=a[i][j];
}
double avg=sum*1.0/n;
double ans = sqrt(dp(n-,,,,)*1.0/n-avg*avg);
printf("%.3f\n",ans);
return ;
}

POJ1191 棋盘分割(DP)的更多相关文章

  1. poj1191 棋盘分割【区间DP】【记忆化搜索】

    棋盘分割 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16263   Accepted: 5812 Description ...

  2. poj1191棋盘分割——区间DP

    题目:http://poj.org/problem?id=1191 分析题意,可知每次要沿棋盘中的一条线把一块一分为二,取其中一块继续分割: σ最小经分析可知即为每块的xi和的平方最小: 故用区间DP ...

  3. poj1191 棋盘分割。 dp

    连接:http://poj.org/problem?id=1191 思路:额,其实就是直接搞记录一下就可以了. #include <stdio.h> #include <string ...

  4. P1436 棋盘分割[dp]

    题目描述 将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的两部分中的任意一块继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘.(每次 ...

  5. POJ 1191 棋盘分割(DP)

    题目链接 大体思路看,黑书...其他就是注意搞一个in数组,这样记忆化搜索,貌似比较快. #include <cstdio> #include <cstring> #inclu ...

  6. POJ1191棋盘分割

    题目:http://poj.org/problem?id=1191 1.分析式子!!! 发现xba是定值,σ的大小仅和∑ xi^2 有关.故dp条件是平方和最小. 2.分出一块就像割掉一条,只需枚举从 ...

  7. NOI1999 JZYZOJ1289 棋盘分割 dp 方差的数学结论

    http://172.20.6.3/Problem_Show.asp?id=1289 除了下标一坨一坨屎一样挺恶心其他都还挺容易的dp,这道题才发现scanf保留小数位是四舍五入的,惊了. f[k][ ...

  8. poj 1191 棋盘分割(dp + 记忆化搜索)

    题目:http://poj.org/problem?id=1191 黑书116页的例题 将方差公式化简之后就是 每一块和的平方 相加/n , 减去平均值的平方. 可以看出来 方差只与 每一块的和的平方 ...

  9. POJ1191 棋盘分割

    Time Limit: 1000MS Memory Limit: 10000K Total Submissions: Accepted: 题目链接: http://poj.org/problem?id ...

随机推荐

  1. Windows主机里利用VMware安装Linux(CentOS)虚拟机,Host-only连接上网方式详解

    关于Host-only指的是主机与虚拟机之间的互联,因此虚拟机是不能连网的,若需要连网则需要使用NAT模式: Host-only模式实现联网得考虑如下配置过程: 附:VMware虚拟机三种网络模式(B ...

  2. 删除/var/lib/docker

    FATA[0000] Get http:///var/run/docker.sock/v1.18/containers/json?all=1: dial unix /var/run/docker.so ...

  3. [BZOJ2423][HAOI2010]最长公共子序列

    [BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...

  4. OpenGL实现三维立方体交互

    http://yunpan.cn/cs62JgxTNs98C  (提取码:668e)

  5. python 的编码问题

    老是碰到这个问题,决定好好给整理一番思路. 翻阅资料和实践证明,以下论述为真理: 字符串在Python内部的表示是unicode编码,因此,在做编码转换时,通常需要以unicode作为中间编码,即先将 ...

  6. Windows环境下的jekyll本地搭建

    一.配置ruby环境 由于jekyll是用ruby语言写的一个静态网页生成工具,所以要搭建jekyll本地环境就需要先配置好ruby环境. 1)去官网下载Ruby:https://www.ruby-l ...

  7. 右移>> 和 左移<<

    一个int占四个字节,也就是32位,这样的话1不论左移还是右移32位仍旧移到原来的位置,就仍旧是1了. 右移是除,左移是乘.1除1除32次和1乘1乘32次当然都还是1了. 移位操作的简单计算方法 &g ...

  8. Resumable uploads over HTTP. Protocol specification

    Valery Kholodkov <valery@grid.net.ru>, 2010 1. Introduction This document describes applicatio ...

  9. 47. 数组中出现次数超过一半的数字[Number appears more than half times]

    [题目]:数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字. 例如长度为9的数组{1,2,3,2,2,2,5,4,2}中次数超过了数组长度的一半的数字为2,而长度为8的数组{1,2,3,2 ...

  10. (转)SQL SERVER的锁机制(二)——概述(锁的兼容性与可以锁定的资源)

    二.完整的锁兼容性矩阵(见下图) 对上图的是代码说明:见下图. 三.下表列出了数据库引擎可以锁定的资源. 名称 资源 缩写 编码 呈现锁定时,描述该资源的方式 说明 数据行 RID RID 9 文件编 ...