这次来分析下切面的执行过程。

1.怎么看?

怎么开始看源码呢?就直接从被增强的方法调用那里打断点,看看怎么执行的:

然后就来到了这:

2.初步分析

里面有段:

if (this.advised.exposeProxy) {
// Make invocation available if necessary.
oldProxy = AopContext.setCurrentProxy(proxy);
setProxyContext = true;
}

就是上篇文章讲到的注解配置暴露代理对象,放到AopContext的ThreadLocal里去,之后就可以随时用 AopContext.currentProxy())取到代理对象。

接下来有段重要的:

List<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);

获取拦截器链,就是把这次相关的增强器转化成拦截器获取出来

然后:

if (chain.isEmpty()) {
// We can skip creating a MethodInvocation: just invoke the target directly
// Note that the final invoker must be an InvokerInterceptor so we know it does
// nothing but a reflective operation on the target, and no hot swapping or fancy proxying.
Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);
retVal = AopUtils.invokeJoinpointUsingReflection(target, method, argsToUse);
}
else {
// We need to create a method invocation...
invocation = new ReflectiveMethodInvocation(proxy, target, method, args, targetClass, chain);
// Proceed to the joinpoint through the interceptor chain.
retVal = invocation.proceed();
}

这里就是判断拦截器链有没有东西,如果是空的就直接通过反射调用,不是空就进行else逻辑了,那else是重点了,即invocation.proceed();

3.invocation.proceed()

public Object proceed() throws Throwable {
// We start with an index of -1 and increment early.
if (this.currentInterceptorIndex == this.interceptorsAndDynamicMethodMatchers.size() - 1) {
return invokeJoinpoint();
} Object interceptorOrInterceptionAdvice =
this.interceptorsAndDynamicMethodMatchers.get(++this.currentInterceptorIndex);
if (interceptorOrInterceptionAdvice instanceof InterceptorAndDynamicMethodMatcher) {
// Evaluate dynamic method matcher here: static part will already have
// been evaluated and found to match.
InterceptorAndDynamicMethodMatcher dm =
(InterceptorAndDynamicMethodMatcher) interceptorOrInterceptionAdvice;
if (dm.methodMatcher.matches(this.method, this.targetClass, this.arguments)) {
return dm.interceptor.invoke(this);
}
else {
// Dynamic matching failed.
// Skip this interceptor and invoke the next in the chain.
return proceed();
}
}
else {
// It's an interceptor, so we just invoke it: The pointcut will have
// been evaluated statically before this object was constructed.
return ((MethodInterceptor) interceptorOrInterceptionAdvice).invoke(this);
}
}

第一个if是递归的终止条件,明显是根据下标进行终止的条件

后面进行前++,又调用了

((MethodInterceptor) interceptorOrInterceptionAdvice).invoke(this);

然而这里面是:

public Object invoke(MethodInvocation mi) throws Throwable {
MethodInvocation oldInvocation = invocation.get();
invocation.set(mi);
try {
return mi.proceed();
}
finally {
invocation.set(oldInvocation);
}
}

又跑回proceed方法去了,递归。

第二次来到的时候下标就是0了(第一次是-1,默认的),前++为1的下标的话,取出来的东西继续调用invoke发现进的是AspectJAfterThrowingAdvice的invoke了(第一次是ExposeInvocationInterceptor的invoke,记录下MethodInvocation供后面执行链获取)

这个AspectJAfterThrowingAdvice的invoke的源码如下(不一样):

public Object invoke(MethodInvocation mi) throws Throwable {
try {
return mi.proceed();
}
catch (Throwable ex) {
if (shouldInvokeOnThrowing(ex)) {
invokeAdviceMethod(getJoinPointMatch(), null, ex);
}
throw ex;
}
}

继续递归,不过这次把调用链try起来了,出异常就走异常增强通知invokeAdviceMethod

继续debug,又是递归到invoke,但这次是AfterReturningAdviceInterceptor的:

public Object invoke(MethodInvocation mi) throws Throwable {
Object retVal = mi.proceed();
this.advice.afterReturning(retVal, mi.getMethod(), mi.getArguments(), mi.getThis());
return retVal;
}

提一下啊,递归是栈结构!所以我们先看到了异常调用代码和返回通知代码!

继续递归proceed到了后置通知AspectJAfterAdvice类的invoke:

public Object invoke(MethodInvocation mi) throws Throwable {
try {
return mi.proceed();
}
finally {
invokeAdviceMethod(getJoinPointMatch(), null, null);
}
}

看到没,后置通知类的invokeAdviceMethod调用是用的finally,所以后置通知始终执行!

继续递归

跳到了前置通知类MethodBeforeAdviceInterceptor的invoke

public Object invoke(MethodInvocation mi) throws Throwable {
this.advice.before(mi.getMethod(), mi.getArguments(), mi.getThis());
return mi.proceed();
}

注意这里不一样了!它是先调用自己再调执行链,这也就是为什么前置通知早于方法执行

before方法执行完之后,进proceed了,递归即将结束:

所有的增强器取出来了,并执行了before 这里递归就结束了,调用目标方法:invokeJoinpoint

然后是后置通知各种,有异常就走之前try finally那里。

至此aop具体逻辑结束!

总结下易翻车点:

1.注意看自己的源码是哪个类,不然很懵逼,因为调了很多个类的同名方法invoke。

2.注意看是递归,和递归结束条件

3.注意invoke的实现,对于不同的增强器的逻辑是不一样的

4.增强器那个集合是有顺序好的

Spring-AOP源码分析随手记(二)的更多相关文章

  1. 5.2 Spring5源码--Spring AOP源码分析二

    目标: 1. 什么是AOP, 什么是AspectJ 2. 什么是Spring AOP 3. Spring AOP注解版实现原理 4. Spring AOP切面原理解析 一. 认识AOP及其使用 详见博 ...

  2. 5.2 spring5源码--spring AOP源码分析二--切面的配置方式

    目标: 1. 什么是AOP, 什么是AspectJ 2. 什么是Spring AOP 3. Spring AOP注解版实现原理 4. Spring AOP切面原理解析 一. 认识AOP及其使用 详见博 ...

  3. spring AOP源码分析(三)

    在上一篇文章 spring AOP源码分析(二)中,我们已经知道如何生成一个代理对象了,那么当代理对象调用代理方法时,增强行为也就是拦截器是如何发挥作用的呢?接下来我们将介绍JDK动态代理和cglib ...

  4. Spring AOP源码分析(三):基于JDK动态代理和CGLIB创建代理对象的实现原理

    AOP代理对象的创建 AOP相关的代理对象的创建主要在applyBeanPostProcessorsBeforeInstantiation方法实现: protected Object applyBea ...

  5. Spring AOP 源码分析 - 拦截器链的执行过程

    1.简介 本篇文章是 AOP 源码分析系列文章的最后一篇文章,在前面的两篇文章中,我分别介绍了 Spring AOP 是如何为目标 bean 筛选合适的通知器,以及如何创建代理对象的过程.现在我们的得 ...

  6. Spring AOP 源码分析 - 创建代理对象

    1.简介 在上一篇文章中,我分析了 Spring 是如何为目标 bean 筛选合适的通知器的.现在通知器选好了,接下来就要通过代理的方式将通知器(Advisor)所持有的通知(Advice)织入到 b ...

  7. Spring AOP 源码分析 - 筛选合适的通知器

    1.简介 从本篇文章开始,我将会对 Spring AOP 部分的源码进行分析.本文是 Spring AOP 源码分析系列文章的第二篇,本文主要分析 Spring AOP 是如何为目标 bean 筛选出 ...

  8. Spring AOP 源码分析系列文章导读

    1. 简介 前一段时间,我学习了 Spring IOC 容器方面的源码,并写了数篇文章对此进行讲解.在写完 Spring IOC 容器源码分析系列文章中的最后一篇后,没敢懈怠,趁热打铁,花了3天时间阅 ...

  9. spring aop 源码分析(二) 代理方法的执行过程分析

    在上一篇aop源码分析时,我们已经分析了一个bean被代理的详细过程,参考:https://www.cnblogs.com/yangxiaohui227/p/13266014.html 本次主要是分析 ...

  10. spring aop 源码分析(三) @Scope注解创建代理对象

    一.源码环境的搭建: @Component @Scope(scopeName = ConfigurableBeanFactory.SCOPE_SINGLETON,proxyMode = ScopedP ...

随机推荐

  1. Python数据分析揭秘知乎大V的小秘密

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 清风小筑 PS:如有需要Python学习资料的小伙伴可以加点击下方链 ...

  2. 反射DataTable转实体类

    using System; using System.Collections.Generic; using System.Data; using System.Reflection; namespac ...

  3. Android开发利器之pidcat

    介绍pidcat: pidcat 是Android届JakeWharton大神开发的一款命令行工具,堪称Android开发利器,它能方便Android程序猿捕获日志,过滤日志,定位程序问题,超级好用. ...

  4. 论文学习-wlg-基于二维材料的肖特基异质结构的通用尺度定律

    目录 主要公式: 各个段落的内容 第一页 第二页 第三页 名词的含义 功函数: 电子亲和力 肖特基势垒 肖特基二极管的原理 非相对论性电子气:未知 Rashba自旋电子系统: 参考链接: 主要公式: ...

  5. viscode 使用 格式的配置

    viscode 现在也越来越适用于 python 开发使用的 IDEA ,慢慢不逊色于  pycharm .下面是关于使用的 格式[字体颜色,背景之类的配置] 1. 2. 如果是设置的 中文显示,在界 ...

  6. CodeForces-1257D (贪心+双指针)

    题意 https://vjudge.net/problem/CodeForces-1257D 你需要操作m个英雄去打败n只怪物,每个英雄的力量值为pi,可以打败si只怪物:每只怪物的力量值为ai. 当 ...

  7. fake_useragent.json

    { "browsers": { "chrome": [ "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.3 ...

  8. unity_animator_stop_replay(重新播放)

    对于一个Animation重复播放,但在隐藏后,再次显示播放会出现有些属性未复原 问题描述 特效同事给的Animation中更改了物体的很多属性,如Active,Alpha, Scale,Positi ...

  9. Python入门基础学习(函数)

    Python基础学习笔记(三) 函数的概念: 所谓函数,就是把具有独立功能的代码块组织为一个小模块,在需要的时候调用 函数的使用包含两个步骤: 1.定义函数 --封装独立的功能 2.调用函数 --享受 ...

  10. CentOS 8安装体验

    这两天出来了,晚上爽一爽. 一,下载 http://ftp.sjtu.edu.cn/centos/8.0.1905/isos/x86_64/ 还是那7G左右的保险,没有minial版了,那个500m多 ...