HDU - 4305

题意:

    比较裸的一道生成树计数问题,构造Krichhoof矩阵,求解行列式即可。但是这道题还有一个限制,就是给定的坐标中,两点连线中不能有其他的点,否则这两点就不能连接。枚举点,用叉积计算是否共线即可。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
// #pragma GCC diagnostic error "-std=c++11"
// #pragma comment(linker, "/stack:200000000")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
// #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = ;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/
const int maxn = ;
int n,r;
int a[maxn][maxn],fa[maxn];
struct node
{
int x,y;
}p[maxn];
int find(int x){
if(fa[x] == x)return x;
return fa[x] = find(fa[x]);
}
void uni(int x,int y){
int px = find(x);
int py = find(y);
fa[px] = py;
}
void cal(){
ll ans = ;int sign = ;
for(int i=; i<=n; i++){ //当前行
for(int j=i+; j<=n; j++){
int x = i, y = j;
while(a[y][i]){ //利用gcd的方法,不停地进行辗转相除,达到消去其他行对应列元素的目的
ll t = a[x][i] / a[y][i];
for(int k=i; k<=n; k++)
a[x][k] = (a[x][k] - a[y][k]*t)%mod;
swap(x,y);
} if(x != i){ //奇数次交换,则D=-D'整行交换
for(int k = ; k<=n; k++){
swap(a[i][k], a[x][k]);
}
sign ^= ;
}
}
if(a[i][i] == ){ //斜对角中有一个0,则结果为0
puts("");
return;
}
else ans = ans * a[i][i] %mod;
}
if(sign) ans *= -;
if(ans < ) ans += mod;
printf("%lld\n", ans);
}
double dis(int i,int j){
return sqrt(1.0*(p[i].x - p[j].x)*(p[i].x - p[j].x) + 1.0*(p[i].y - p[j].y)*(p[i].y - p[j].y));
}
bool check(int i,int k,int j){
return ((p[j].x - p[k].x)*(p[j].y - p[i].y) == (p[j].x - p[i].x)*(p[j].y - p[k].y)) \
&&(max(p[i].x,p[j].x) >= p[k].x) &&(min(p[i].x,p[j].x) <= p[k].x)\
&&(max(p[i].y,p[j].y) >= p[k].y) &&(min(p[i].y,p[j].y) <= p[k].y);
}
int main(){
int t; scanf("%d", &t);
while(t--){
memset(a,,sizeof(a));
scanf("%d%d", &n, &r);
for(int i=; i<=n; i++)fa[i] = i;
for(int i=; i<=n; i++){
scanf("%d%d", &p[i].x, &p[i].y);
}
for(int i=; i<=n; i++){
for(int j=; j<i; j++){
int ok = ;
for(int k=; k<=n; k++){
if(k==i||k==j)continue;
if(check(i,k,j)){ok=;break;}
}
if(ok && dis(i,j) <= r){
a[i][j] = a[j][i] = -;
a[i][i]++,a[j][j]++;
uni(i,j);
}
}
}
int c = ;
for(int i=; i<=n; i++){
if(fa[i] == i)c++;
}
if(c!=)puts("-1");
else {
n--;
cal();
}
}
return ;
}

HDU - 4305

HDU - 4305 - Lightning 生成树计数 + 叉积判断三点共线的更多相关文章

  1. HDU 4305 Lightning(计算几何,判断点在线段上,生成树计数)

    Lightning Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  2. hdu 4885 (n^2*log(n)判断三点共线建图)+最短路

    题意:车从起点出发,每次只能行驶L长度,必需加油到满,每次只能去加油站或目的地方向,路过加油站就必需进去加油,问最小要路过几次加油站. 开始时候直接建图,在范围内就有边1.跑最短了,再读题后发现,若几 ...

  3. HDU 4305 Lightning Matrix Tree定理

    题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...

  4. 【HDU 4305】Lightning(生成树计数)

    Problem Description There are N robots standing on the ground (Don't know why. Don't know how). Sudd ...

  5. Friends and Berries URAL - 2067 (计算三点共线和计算的时候的注意点)

    题目链接:https://cn.vjudge.net/problem/URAL-2067 具体思路:判断三点共线就可以了,只有一对点能满足,如果一对就没有那就没有满足的. 在计算的时候,要注意,如果是 ...

  6. HDU4305:Lightning(生成树计数+判断点是否在线段上)

    Lightning Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  7. 【BZOJ1494】【NOI2007】生成树计数(动态规划,矩阵快速幂)

    [BZOJ1494][NOI2007]生成树计数(动态规划,矩阵快速幂) 题面 Description 最近,小栋在无向连通图的生成树个数计算方面有了惊人的进展,他发现: ·n个结点的环的生成树个数为 ...

  8. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

  9. BZOJ1494 [NOI2007]生成树计数

    题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser  autoint Logout 捐赠本站 Probl ...

随机推荐

  1. eclipse的下载安装配置

    1.在eclipse官网下载与你电脑版本相对应的安装包.链接:https://www.eclipse.org/downloads/eclipse-packages/ 2.下载与eclipse版本相对应 ...

  2. C#下载文件,Stream 和 byte[] 之间的转换

    stream byte 等各类转换 http://www.cnblogs.com/warioland/archive/2012/03/06/2381355.html using (System.Net ...

  3. HBase MapReduce 一些 ClassNotFoundException 所缺少的jar包

    我们在用 java 操作 HBase  时,可能会出现相关的 ClassNotFoundException  等异常信息,但是我们又不想把 HBase lib 下的所有jar包全部导入到工程,因为会有 ...

  4. Java实现调用Bartender控制条码打印机

    官方提供的主要是C#支持. 基于java调用bartender二次开发官方给了一份1998年的J#代码,,,完全用不了,,,百度谷歌搜索万能的网友的答案,发现也没有可参考的.. 最后想到了之前用到了一 ...

  5. Vector的一些事

    1.利用数组对vector进行初始化方法 当然有许多方法,这里就讲一种.原因简单,其他方式请参见这个博文:http://www.cplusplus.me/1112.html , , , , -}; v ...

  6. MyBatis 二级缓存全详解

    目录 MyBatis 二级缓存介绍 二级缓存开启条件 探究二级缓存 二级缓存失效的条件 第一次SqlSession 未提交 更新对二级缓存影响 探究多表操作对二级缓存的影响 二级缓存源码解析 二级缓存 ...

  7. Dubbo的基本介绍及使用

    一,前言 ​ 在面对新技术新事物的时候,我们首先应该了解这是一个什么东东,了解为什么使用这门技术,如果我们不使用又会有什么影响.比如,本篇博客介绍Dubbo的基本使用,此时我们应该先要明白我为什么要使 ...

  8. turtle绘制图形

    Example1: import turtle as t #初始设置画笔的宽度(size).颜色(color) t.pensize(5) t.pencolor("black") # ...

  9. 依赖注入在 dotnet core 中实现与使用:1 基本概念

    关于 Microsoft Extension: DependencyInjection 的介绍已经很多,但是多数偏重于实现原理和一些特定的实现场景.作为 dotnet core 的核心基石,这里准备全 ...

  10. EXP查询合集提权后渗透必备

    0x00 整理的一些后渗透提权需要用到的一些漏洞,后渗透提权的时候可以看一下目标机那些补丁没打,再进行下一步渗透提权. 0x01 CVE-2019-0803 [An elevation of priv ...