LsF is visiting a local amusement park with his friends, and a mirror room successfully attracts his attention. Inside the mirror room, there are n plane mirrors standing vertically on the ground. They are placed end-to-end and face-to-face so that if you overlook the room, you can find a convex hull and the all the reflector surfaces are inside the pattern. The height of the mirror is not important in this problem. 

Due to imperfect manufacturing techniques, mirrors can't reflect light without lose of energy. Each mirror has a reflection efficiency k, which means if the incident light's intensity is I, the reflected light's intensity will be reduced to kI. The only exception could happen when the light precisely goes to the two mirrors' junction. In that case, the light will be completely absorbed instantly. Note the laws of reflection of light applies in all other situations, that the angle of incidence equals the angle of reflection. 

Now LsF stands inside the mirror hall, and shoots a laser beam paralleled to the ground using his laser pointer. Unfortunately, his laser pointer can only shot laser beams with intensity of 1. What's worse, a laser beam is considered disappeared if its intensity is below 10−410−4. There's not much magnitude distance between the two numbers. 

LsF wants to know how many touches can his laser beam make with mirrors before it disappears.

Input

The first line contains an integer n(3≤n≤1000), indicating the number of mirrors; 

Then n lines follow. The ith line contains three real numbers xi,yi,ki(−109≤xi,yi≤109;0≤ki≤0.9)xi,yi,ki(−109≤xi,yi≤109;0≤ki≤0.9), which means the ith mirror's one end is at position (xi,yi)(xi,yi) and another end is at (xi+1xi+1mod n,yi+1yi+1mod n), and its reflectivity is kiki. 

Next there are two real numbers Vx,Vy(-109≤Vx,Vy≤109), indicating the initial direction vector of the laser beam. 

LsF is standing at the origin (0, 0).

Output

Output an integer in one line, the number of touches the laser beam could make before it disappears.

Sample Input

4
1 2 0.5
-1 0 0.5
1 -2 0.5
3 0 0.5
0 1
4
1 1 0.5
-1 1 0.5
-1 -1 0.5
1 -1 0.5
1 1

Sample Output

14
1

题解:因为0.1<=K<=0.9因此最多反射100,就一定可以消失。首先,我们判断该射线是否可以与镜面相交,如果与某一镜面相交,我们再判断是指向镜面还是反向指向镜面的,然后,我们可以计算出射线,与镜面的交点(用两个向量的投影相等)。然后更新O点与向量V;

#include<bits/stdc++.h>
using namespace std; struct Point{
double x,y,k;
} point[2010];
Point V;
Point vec(Point a,Point b)
{
return Point{a.x-b.x,a.y-b.y};
} double cha_ji(Point a,Point b) //判断是否相交
{
return a.x*b.y-a.y*b.x;
} Point jiao_point(Point O,Point V,Point a,Point b)//求交点
{
double dx=a.x-b.x;
double dy=a.y-b.y;
double t= ((O.x-a.x)*dy-(O.y-a.y)*dx)/(V.y*dx-V.x*dy);
return Point{O.x+t*V.x,O.y+V.y*t};
} double Nod(Point a,Point b)
{
return a.x*b.x+a.y*b.y;
} int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<n;i++) scanf("%lf%lf%lf",&point[i].x,&point[i].y,&point[i].k);
Point O{0,0};
scanf("%lf%lf",&V.x,&V.y);
double power=1;
int ans=0,flag=0;
while(power>=1e-4)
{
for(int i=0;i<n;i++)
{
if(cha_ji(V,vec(point[i],O))*cha_ji(V,vec(point[(i+1)%n],O))<0)
{
Point nod=jiao_point(O,V,point[i],point[(i+1)%n]);
if(Nod(V,vec(nod,O))<0) continue;
double dx=point[(i+1)%n].x-point[i].x;
double dy=point[(i+1)%n].y-point[i].y;
Point nex=(Point) {O.x-2*dx*(dx*O.x+dy*O.y-nod.x*dx-nod.y*dy)/(dx*dx+dy*dy),O.y-2*dy*(dx*O.x+dy*O.y-nod.x*dx-nod.y*dy)/(dx*dx+dy*dy)};
V=vec(nex,nod);
O=(Point){nod.x+0.1*V.x,nod.y+0.1*V.y};
ans++;
power*=point[i].k;
break;
}
else if(cha_ji(V,vec(point[i],O))*cha_ji(V,vec(point[(i+1)%n],O))==0)
{
ans++;flag=1;
break;
}
}
if(flag) break;
}
cout<<ans<<endl;
}
return 0;
}

(全国多校重现赛一)D Dying light的更多相关文章

  1. (全国多校重现赛一)F-Senior Pan

    Senior Pan fails in his discrete math exam again. So he asks Master ZKC to give him graph theory pro ...

  2. (全国多校重现赛一) J-Two strings

    Giving two strings and you should judge if they are matched.  The first string contains lowercase le ...

  3. (全国多校重现赛一) H Numbers

    zk has n numbers a1,a2,...,ana1,a2,...,an. For each (i,j) satisfying 1≤i<j≤n, zk generates a new ...

  4. (全国多校重现赛一)E-FFF at Valentine

    At Valentine's eve, Shylock and Lucar were enjoying their time as any other couples. Suddenly, LSH, ...

  5. (全国多校重现赛一)B-Ch's gifts

    Mr. Cui is working off-campus and he misses his girl friend very much. After a whole night tossing a ...

  6. (全国多校重现赛一)A-Big Binary Tree

    You are given a complete binary tree with n nodes. The root node is numbered 1, and node x's father ...

  7. 2016ACM/ICPC亚洲区沈阳站-重现赛赛题

    今天做的沈阳站重现赛,自己还是太水,只做出两道签到题,另外两道看懂题意了,但是也没能做出来. 1. Thickest Burger Time Limit: 2000/1000 MS (Java/Oth ...

  8. 2016 CCPC 东北地区重现赛

    1. 2016 CCPC 东北地区重现赛 2.总结:弱渣,只做出01.03.05水题 08   HDU5929 Basic Data Structure    模拟,双端队列 1.题意:模拟一个栈的操 ...

  9. 2016 CCPC长春重现赛

    1.2016中国大学生程序设计竞赛(长春)-重现赛 2.总结:会做的太少,应变能力也不行,或者说猜题目的能力不行 02  水 04  HDU 5914  Triangle 1.题意:1~n,n个数,问 ...

随机推荐

  1. [软件使用][matlab]最近经常用到的一些函数的意思,和用法

    ① cat(dim,A,B)按指定的维度,将A和B串联,dim是维度,比如1,2.1指列,2指行: ②numel(A),返回数组中,元素的个数 ③gpuArray(A),在gpu中产生一个数组A,一般 ...

  2. pat 1069 The Black Hole of Numbers(20 分)

    1069 The Black Hole of Numbers(20 分) For any 4-digit integer except the ones with all the digits bei ...

  3. nyoj 216-A problem is easy ((i + 1) * (j + 1) = N + 1)

    216-A problem is easy 内存限制:64MB 时间限制:1000ms 特判: No 通过数:13 提交数:60 难度:3 题目描述: When Teddy was a child , ...

  4. 【并发编程】Java中的原子操作

    什么是原子操作 原子操作是指一个或者多个不可再分割的操作.这些操作的执行顺序不能被打乱,这些步骤也不可以被切割而只执行其中的一部分(不可中断性).举个列子: //就是一个原子操作 int i = 1; ...

  5. 小白学 Python 爬虫(4):前置准备(三)Docker基础入门

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

  6. 根据本地ip获取地理位置,再根据地理位置,获取天气

    import json,requestsfrom urllib.request import urlopenfrom pyquery import PyQuery as pqfrom lxml imp ...

  7. Scala学习笔记三

    scala变量理解: package com.cxy.scala object Hello { def main(args: Array[String]): Unit = { println(&quo ...

  8. Rust入坑指南:鳞次栉比

    很久没有挖Rust的坑啦,今天来挖一些排列整齐的坑.没错,就是要介绍一些集合类型的数据类型."鳞次栉比"这个标题是不是显得很有文化? 在Rust入坑指南:常规套路一文中我们已经介绍 ...

  9. SpringSecurity代码实现JWT接口权限授予与校验

    通过笔者前两篇文章的说明,相信大家已经知道JWT是什么,怎么用,该如何结合Spring Security使用.那么本节就用代码来具体的实现一下JWT登录认证及鉴权的流程. 一.环境准备工作 建立Spr ...

  10. C语言之修改常量

    前言:指针!菜鸟的终点,高手的起点.漫谈一些进阶之路上的趣事:记录一些语言本身的特性以及思想,没有STL,也没有API! 0x01: 程序内存中的存储划分 对于程序在内存中是如何分布的,网上有多个解释 ...