题目链接:http://www.spoj.com/problems/BALNUM/en/

题意:问你在[A,B]的闭区间内有几个满足要求的数,要求为每个出现的奇数个数为偶数个,每个出现的偶数个数为奇数个。

显然dfs很好想到dfs(int len , int even[] , int odd[] , int flag , int first)

even表示前len位出现偶数的总状态 , odd表示前len位出现奇数的总状态,first表示是否为首位(特判全为0的结果)

但是这样写dfs dp不好搞,因为dp也要能表示前len位的奇偶出现状况,所以索性直接将dp的第二维保存为状态。

由于一共有0~9,10个数字,而且总共只有奇偶两种状态,所以直接用3进制来保存状态。

即dp[len][s],dfs(int len , int s , int flag , int first)

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef unsigned long long ull;
const int M = 6e4;
ull a , b , dp[20][M];
int dig[20];
int check(int x) {
int num[20];
for(int i = 0 ; i < 10 ; i++) {
num[i] = x % 3;
x /= 3;
}
for(int i = 0 ; i < 10 ; i++) {
if(num[i]) {
if(i % 2 == 0) {
if(num[i] == 2)
return 0;
}
else {
if(num[i] == 1)
return 0;
}
}
}
return 1;
}
int getsnew(int s , int x) {
int num[20];
for(int i = 0 ; i < 10 ; i++) {
num[i] = s % 3;
s /= 3;
}
if(num[x] != 0)
num[x] = 3 - num[x];
else
num[x] = 1;
int sum = 0;
int power = 1;
for(int i = 0 ; i < 10 ; i++) {
sum += num[i] * power;
power *= 3;
}
return sum;
}
ull dfs(int len , int s , int flag , int first) {
if(!len)
return check(s);
if(!flag && dp[len][s] != -1)
return dp[len][s];
int t = flag ? dig[len] : 9;
ull sum = 0;
for(int i = 0 ; i <= t ; i++) {
if(first) {
sum += dfs(len - 1 , i == 0 ? 0 : getsnew(s , i) , flag && i == t , first && i == 0);
}
else {
sum += dfs(len - 1 , getsnew(s , i) , flag && i == t , first && i == 0);
}
}
if(!flag)
dp[len][s] = sum;
return sum;
}
ull Gets(ull x) {
if(x == 0)
return 1;
int len = 0;
while(x) {
dig[++len] = x % 10;
x /= 10;
}
return dfs(len , 0 , 1 , 1);
}
int main() {
int t;
memset(dp , -1 , sizeof(dp));
scanf("%d" , &t);
while(t--) {
scanf("%lld%lld" , &a , &b);
printf("%lld\n" , Gets(b) - Gets(a - 1));
}
return 0;
}

BALNUM - Balanced Numbers(数位dp)的更多相关文章

  1. SPOJ BALNUM - Balanced Numbers - [数位DP][状态压缩]

    题目链接:http://www.spoj.com/problems/BALNUM/en/ Time limit: 0.123s Source limit: 50000B Memory limit: 1 ...

  2. SPOJ10606 BALNUM - Balanced Numbers(数位DP+状压)

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a ...

  3. Balanced Numbers (数位DP)

    Balanced Numbers https://vjudge.net/contest/287810#problem/K Balanced numbers have been used by math ...

  4. spoj Balanced Numbers(数位dp)

    一个数字是Balanced Numbers,当且仅当组成这个数字的数,奇数出现偶数次,偶数出现奇数次 一下子就相到了三进制状压,数组开小了,一直wa,都不报re, 使用记忆化搜索,dp[i][s] 表 ...

  5. spoj 10606 Balanced Numbers 数位dp

    题目链接 一个数称为平衡数, 满足他各个数位里面的数, 奇数出现偶数次, 偶数出现奇数次, 求一个范围内的平衡数个数. 用三进制压缩, 一个数没有出现用0表示, 出现奇数次用1表示, 出现偶数次用2表 ...

  6. BALNUM - Balanced Numbers

    BALNUM - Balanced Numbers Time limit:123 ms Memory limit:1572864 kB Balanced numbers have been used ...

  7. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP) 链接:https://ac.nowcoder.com/acm/contest/163/ ...

  8. SPOJ BALNUM Balanced Numbers (数位dp)

    题目:http://www.spoj.com/problems/BALNUM/en/ 题意:找出区间[A, B]内所有奇数字出现次数为偶数,偶数字出现次数为计数的数的个数. 分析: 明显的数位dp题, ...

  9. SPOJ - BALNUM Balanced Numbers(数位dp+三进制状压)

    Balanced Numbers Balanced numbers have been used by mathematicians for centuries. A positive integer ...

  10. SPOJ - BALNUM - Balanced Numbers(数位DP)

    链接: https://vjudge.net/problem/SPOJ-BALNUM 题意: Balanced numbers have been used by mathematicians for ...

随机推荐

  1. 你所不知道的 CSS 负值技巧与细节

    写本文的起因是,一天在群里有同学说误打误撞下,使用负的 outline-offset 实现了加号.嗯?好奇的我马上也动手尝试了下,到底是如何使用负的 outline-offset 实现加号呢? 使用负 ...

  2. 用HTML5的Audio标签做一个歌词同步的效果

    HTML5出来这么久了,但是关于它里面的audio标签也就用过那么一次,当然还仅仅只是把这个标签插入到了页面中.这次呢就刚好趁着帮朋友做几个页面,拿这个audio标签来练练手. 首先你需要向页面中插入 ...

  3. HTML5 Device Access (设备访问)

    camera api (含图片预览) 参考地址 主要为利用input type=file, accept="image/*" 进行处理 图片预览方式(两种) const file ...

  4. 素数筛法(Eratosthenes筛法)

    介绍 Eratosthenes筛法,又名埃氏筛法,对于求1~n区间内的素数,时间复杂度为n log n,对于10^6^ 以内的数比较合适,再超出此范围的就不建议用该方法了. 筛法的思想特别简单: 对于 ...

  5. 安全测试基础2-sqlmap演练

    sqlmap简介 sqlmap是一个开源的渗透测试工具,可以用来进行自动化检测,利用SQL注入漏洞,获取数据库服务器的权限. 它具有功能强大的检测引擎,针对各种不同类型数据库的渗透测试的功能选项,包括 ...

  6. hadoop2.7之作业提交详解(下)

    接着作业提交详解(上)继续写:在上一篇(hadoop2.7之作业提交详解(上))中已经讲到了YARNRunner.submitJob() [WordCount.main() -> Job.wai ...

  7. JMeter的JTL大文件解析

    1.背景 不知大家在使用JMeter工具进行性能测试时,是否遇到过JTL结果文件过大导致GUI页面长时间解析无响应的问题.这种情况往往出现在稳定性测试场景下,此时的JTL文件大小可能已经达到G级别了. ...

  8. 【译】为什么要了解HTTP

    原文地址:Why should I care about HTTP? 原作信息:by Devon Campbell. Dec 15 '18 Originally published at raddev ...

  9. 源码分析--dubbo服务端暴露

    服务暴露的入口方法是 ServiceBean 的 onApplicationEvent.onApplicationEvent 是一个事件响应方法,该方法会在收到 Spring 上下文刷新事件后执行服务 ...

  10. IDEA编辑器

    一.打开含有jsx语法的文件都会显示红线,提示export declarations are not supported bu current javascript version 解决办法: 二.I ...