一道区间dp的模板题,这里主要记一下dp时环形数据的处理

简略版:方法一:枚举分开的位置,将圈化为链,因此要做n次。

    方法二:将链重复两次,即做一个2n-1长度的链,其中第i(i<=n)堆石子与i+n堆相同。

        对整个长链dp后,枚举(1, n), (2, n+1) ... (n, 2n-1),取最值即可。

题目描述

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入格式

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输出格式

输出共2行,第1行为最小得分,第2行为最大得分.

输入输出样例

输入 #1

4
4 5 9 4
输出 #1

43
54

由于只有相邻的石子才能被合成为一堆,因此在所有时刻的任意一堆石子(无论被合成了几次)都可以看做相邻几堆石子的和。即,均可以用一个闭区间[l, r]表示。
进行动态规划时,两堆石子的合并可以被看作两个区间的合并,即两个小区间的信息向一个大区间转移
为处理环形数据,这里采用的方法是将数组arr重复两次,即arr[i+n] = arr[i](i<=n)。
设sum[i]为数组arr(重复后)的前缀和,dp1[i][j]、dp2[i][j]分别为第i堆至第j堆石子合并的得分最小值、最大值。
状态转移方程:

dp1[i][j] = min{dp1[i][k] + dp1[k+][j] + sum[j] - sum[i-]}
dp2[i][j] = max{dp2[i][k] + dp2[k+][j] + sum[j] - sum[i-]}
(i <= k <= j-)

注意初始化dp1[i][i] = INF,dp2[i][i] = 0。

代码实现后时间复杂度为O(8n3),相对与朴素的拆环方式(枚举断点做n次dp)的时间复杂度O(n4)在数据较大时有优势。

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define MAXN 300
using namespace std;
int dp1[MAXN][MAXN], dp2[MAXN][MAXN];
int arr[MAXN], sum[MAXN];
int n, ans_min = INF, ans_max = -;
void in_put(){
scanf("%d", &n);
for(int i=; i<=n; i++){
scanf("%d", &arr[i]);
arr[i+n] = arr[i];
}
}
void dp(){
for(int len=; len<=n; len++){
for(int i=; i<=*n; i++){
int end = i + len - ;
dp1[i][end] = INF, dp2[i][end] = -;
for(int j=i; j<end; j++){
dp1[i][end] = min(dp1[i][end], dp1[i][j] + dp1[j+][end]);
dp2[i][end] = max(dp2[i][end], dp2[i][j] + dp2[j+][end]);
}
dp1[i][end] += sum[end] - sum[i-];
dp2[i][end] += sum[end] - sum[i-];
}
}
for(int i=; i<=n; i++){
if(dp1[i][i+n-] < ans_min) ans_min = dp1[i][i+n-];
if(dp2[i][i+n-] > ans_max) ans_max = dp2[i][i+n-];
}
}
int main(){
// freopen(".in", "r", stdin);
// freopen(".out", "w", stdout);
in_put();
for(int i=; i<=n*; i++){
sum[i] = sum[i-] + arr[i];
dp1[i][i] = , dp2[i][i] = ;
}
dp();
printf("%d\n%d", ans_min, ans_max);
return ;
}

NOI1995 石子合并 [Luogu P1880]的更多相关文章

  1. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  2. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  3. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

  4. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

  5. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  6. [LUOGU] P1880 [NOI1995]石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  7. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  8. [洛谷P1880][NOI1995]石子合并

    区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...

  9. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

随机推荐

  1. iframe 设置占屏幕高度 100%

    给 iframe 元素设置 fixed 定位,并且设置 100% 的宽和高: iframe { position: fixed; background: #000; border: none; top ...

  2. 详解PHP魔术函数、魔术常量、预定义常量

    一.魔术函数(13个) 1.__construct() 实例化对象时被调用, 当__construct和以类名为函数名的函数同时存在时,__construct将被调用,另一个不被调用. 2.__des ...

  3. 【MySQL】mysql5.7数据库的安装和配置

    第一步:直接从官网下载安装包,.msi 可以直接点击安装..zip直接解压到目录,本人是C:\Program Files\MySQL\mysql-5.7 第二步:需要配置环境变量,我的电脑->属 ...

  4. 电信资源管理系统:基于 H5 叠加 OpenLayers3 GIS

    前言 通过结合 HTML5 和 OpenLayers 可以组合成非常棒的一个电信地图网络拓扑图的应用,形成的效果可以用来作为电信资源管理系统,美食定位分享软件,片区找房,绘制铁轨线路等等,各个领域都能 ...

  5. Solidity 编程实例--简单的公开拍卖

    通常简单的公开拍卖合约,是每个人可以在拍卖期间发送他们的竞拍出价.为了实现绑定竞拍人的到他们的拍卖,竞拍包括发送金额/ether.如果产生了新的最高竞拍价,前一个最高价竞拍人将会拿回他的钱.在竞拍阶段 ...

  6. SpringBoot系列:Spring Boot使用模板引擎JSP

    一.Java模板引擎 模板引擎(这里特指用于Web开发的模板引擎)是为了使用户界面与业务数据(内容)分离而产生的,它可以生成特定格式的文档,用于网站的模板引擎就会生成一个标准的HTML文档. 在jav ...

  7. 利用npm安装/删除/查看包信息

    查看远程服务器上的包的版本信息 npm view webpack version //查看npm服务器上包webpack的最新版本 npm view webpack versions //查看服务器上 ...

  8. 网页布局——table布局

    table 的特性决定了它非常适合用来做布局,并且表格中的内容可以自动居中,这是之前用的特别多的一种布局方式 而且也加入了 display:table;dispaly:table-cell 来支持 t ...

  9. java23种设计模式(二)抽象工厂模式

    我们接着上一章的工厂方法模式继续学习一下抽象工厂模式. 抽象工厂模式:在工厂模式中,如果有多个产品,则就是抽象工厂模式. 例子: 有一个工厂开了两个子公司,专门用来生产电脑配件键盘和鼠标,一个是联想工 ...

  10. HelloWin详解

    (注意:遇到程序在弄懂之后一定要自己去敲,一定要自己去敲,一定要自己去敲) (注意:遇到程序在弄懂之后一定要自己去敲,一定要自己去敲,一定要自己去敲) (注意:遇到程序在弄懂之后一定要自己去敲,一定要 ...