BZOJ.2916.[POI1997]Monochromatic Triangles(三元环)
\(Description\)
n个点的完全图,其中有m条边用红边相连,其余边为蓝色。求其中三边同色的三角形个数。
\(Solution\)
直接求同色 除了n^3 不会。。
三角形总数是C(n,3),考虑求不同色三角形个数。如果一个点连着两条不同颜色的边,那么这一定是个不同色三角形。
如果点i连出的红边数为\(x\),那么连出蓝边\(n-1-x\),形成的不同色三角形个数就是\(x*(n-1-x)\).
因为同一个不同色三角形会被枚举两次,so \(Ans=C(n,3)-\frac{1}{2}\sum_{i=1}^nx[i]*(n-1-x[i])\)
如图,这个三角形在计算A,B时都算了一次。
感觉和这道坑着的题思路比较像 http://codeforces.com/contest/434/problem/E
//1120kb 40ms
#include <cstdio>
#include <cctype>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=1005;
int n,m,red[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
n=read(), m=read();
while(m--) ++red[read()], ++red[read()];
long long ans=0;
for(int i=1; i<=n; ++i) ans+=1ll*red[i]*(n-1-red[i]);
printf("%lld\n",1ll*n*(n-1)*(n-2)/6-(ans>>1));
return 0;
}
BZOJ.2916.[POI1997]Monochromatic Triangles(三元环)的更多相关文章
- BZOJ 2916: [Poi1997]Monochromatic Triangles [计数]
题意:空间中有n个点,任意3个点不共线.每两个点用红线或者蓝线连接,如果一个三角形的三边颜色相同,那么称为同色三角形.给你一组数据,计算同色三角形的总数. 考虑补集,异色三角形 每个点的边红色和蓝色两 ...
- 【BZOJ 2916】 2916: [Poi1997]Monochromatic Triangles (容斥)
2916: [Poi1997]Monochromatic Triangles Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 310 Solved: 1 ...
- bzoj2916: [Poi1997]Monochromatic Triangles 思路
bzoj2916: [Poi1997]Monochromatic Triangles 链接 bzoj 思路 总方案\(C_{n}^{3}-异色三角形\) 异色三角形有个特点. 会出现两个点有两条不同色 ...
- BZOJ.5407.girls(容斥 三元环)
题目链接 CF 原题 \(Description\) 有n个点,其中有m条边连接两个点.每一个没有连边的三元组\((i,j,k)(i<j<k)\)对答案的贡献为\(A*i+B*j+C*k\ ...
- BZOJ 3498 PA2009 Cakes(三元环处理)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3498 [题目大意] N个点m条边,每个点有一个点权a. 对于任意一个三元环(j,j,k ...
- 【bzoj 2916】[Poi1997]Monochromatic Triangles
题目描述 空间中有n个点,任意3个点不共线.每两个点用红线或者蓝线连接,如果一个三角形的三边颜色相同,那么称为同色三角形.给你一组数据,计算同色三角形的总数. 输入 第 ...
- 【组合数学】Bzoj2916 [Poi1997]Monochromatic Triangles
Description 空间中有n个点,任意3个点不共线.每两个点用红线或者蓝线连接,如果一个三角形的三边颜色相同,那么称为同色三角形.给你一组数据,告诉你哪些点间有一条红线,计算同色三角形的总数. ...
- BZOJ2916 [Poi1997]Monochromatic Triangles 数论
答案等于总三角形数-不合法数 一个不合法三角形一定存在两个顶点,在这个三角形中这个顶点的角的两边不同色 #include<cstring> #include<cmath> #i ...
- BZOJ 3498: PA2009 Cakes 一类经典的三元环计数问题
首先引入一个最常见的经典三元环问题. #include <bits/stdc++.h> using namespace std; const int maxn = 100005; vect ...
随机推荐
- [转]QVector与QByteArray——Qt的写时复制(copy on write)技术
我们在之前的博文QVector的内存分配策略与再谈QVector与std::vector——使用装饰者让std::vector支持连续赋值中简单聊了聊QVector内存分配和赋值方面的一点东西,今天接 ...
- vuejs心法和技法
原文地址:http://www.cnblogs.com/kidsitcn/p/5409994.html 所有的vuejs组件都是被扩展的vue实例: var MyComponent = Vue.ext ...
- for-of循环和for-in循环的区别
基本上for in用于大部分常见的由key-value对构成的对象上以遍历对象内容. 但是for in在遍历数组对象时并不方便,这时候用for of会很方便.
- bootstrap-datetimepicker中设置中文
1.引入插件文件,同时引入相应的语言文件 <script src="bootstrap-datetimepicker/js/bootstrap-datetimepicker.min.j ...
- 【codeforces】【比赛题解】#937 CF Round #467 (Div. 2)
没有参加,但是之后几天打了哦,第三场AK的CF比赛. CF大扫荡计划正在稳步进行. [A]Olympiad 题意: 给\(n\)个人颁奖,要满足: 至少有一个人拿奖. 如果得分为\(x\)的有奖,那么 ...
- usbnet驱动深入分析-usb虚拟网卡host端【转】
转自:http://blog.csdn.net/zh98jm/article/details/6339320 1.驱动流程: 2.明确probe函数的功能: probe有usb core 经枚举过 ...
- Mysql中truncate table和delete语句的区别
Mysql中的truncate table和delete语句都可以删除表里面所有数据,但是在一些情况下有些不同! 例子: truncate table gag; (1)truncate table删除 ...
- Python访问MySQL(1):初步使用PyMySQL包
Windows 10家庭中文版,MySQL 5.7.20 for Win 64,Python 3.6.4,PyMySQL 0.8.1,2018-05-08 ---- 使用Python访问MySQL数据 ...
- vue项目下使用iview总结
iview在IE浏览器下有问题,打开页面是空白
- hihocoder1636 Pangu and Stones(区间DP(石子合并变形))
题目链接:http://hihocoder.com/problemset/problem/1636 题目大意:有n堆石头,每次只能合并l~r堆,每次合并的花费是要合并的石子的重量,问你合并n堆石子的最 ...