P2731 骑马修栅栏 Riding the Fences

题目背景

Farmer John每年有很多栅栏要修理。他总是骑着马穿过每一个栅栏并修复它破损的地方。

题目描述

John是一个与其他农民一样懒的人。他讨厌骑马,因此从来不两次经过一个栅栏。你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次。John能从任何一个顶点(即两个栅栏的交点)开始骑马,在任意一个顶点结束。

每一个栅栏连接两个顶点,顶点用1到500标号(虽然有的农场并没有500个顶点)。一个顶点上可连接任意多(>=1)个栅栏。两顶点间可能有多个栅栏。所有栅栏都是连通的(也就是你可以从任意一个栅栏到达另外的所有栅栏)。

你的程序必须输出骑马的路径(用路上依次经过的顶点号码表示)。我们如果把输出的路径看成是一个500进制的数,那么当存在多组解的情况下,输出500进制表示法中最小的一个 (也就是输出第一位较小的,如果还有多组解,输出第二位较小的,等等)。

输入数据保证至少有一个解。

输入输出格式

输入格式:

第1行: 一个整数F(1 <= F <= 1024),表示栅栏的数目

第2到F+1行: 每行两个整数i, j(1 <= i,j <= 500)表示这条栅栏连接i与j号顶点。

输出格式:

输出应当有F+1行,每行一个整数,依次表示路径经过的顶点号。注意数据可能有多组解,但是只有上面题目要求的那一组解是认为正确的。


好气啊,我觉得这个欧拉路求法及其难以接受。。

欧拉路:从一个点出发,遍历每一个边刚好一次,到达任意一个点的路径称为欧拉路。

若起点和终点不相等,则起点和终点的度数为奇数;

若起点和终点相等,则称之为欧拉回路,整个无向连通图的每个点的度数都为偶数。

求法:从一个合法的起点产生一颗搜索树,对除起点和终点的(在欧拉回路中我们假装把它们分开考虑)每一个点都可以从一个最早的边进入,然后从一个最晚的边出去,我们忽略这两条边,对这个点就产生了一个递归的子问题,相当于从这个点产生了一个子搜索树。

当搜索树产生的点到达搜索树的起点的时候,我们不对这条路径进行存储,因为路径上的某些点可能产生的搜索树可能因为遍历顺序的问题还没有被扩展,而是当回退的时候,我们就用栈存储这条路径,这就保证了回退路径上所有的点都已经对自己的搜索树进行了扩展。对于每一颗搜索树的出边和入边两两进行配对,倒序着形成了一个个环。

倒着存储的核心,确保路径上每一点自己的子问题已经解决

为了保证复杂度,我们用前向星遍历边之后,得将head数组向后置,以便减少不必要的遍历。同时,也要判断每条边是否被遍历,因为是双向边。

对于此题,如果要保证字典序,则每个点优先遍历合法的最小的点,这样小的点就后进栈,当倒序输出栈的时候,自然也就是最小字典序了。


Code:

#include <cstdio>
#include <iostream>
const int N=502;
const int M=2050;
int g[N][N],head[N],Next[M],to[M],cnt=1,S=N,m,in[N];
void add(int u,int v)
{
Next[++cnt]=head[u];to[cnt]=v;head[u]=cnt;
}
void init()
{
scanf("%d",&m);
int u,v;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
if(u>v) std::swap(u,v);
g[u][v]++;
in[v]++,in[u]++;
S=S<u?S:u;
}
for(int i=500;i;i--)
if(in[i]&1)
S=i;
for(int i=500;i;i--)
for(int j=500;j;j--)
{
while(g[i][j]--)
add(i,j),add(j,i);
}
}
int s[M],tot,vis[M];
void dfs(int now)
{
for(int i=head[now];i;i=Next[i])
{
if(!vis[i])
{
vis[i]=1;
vis[i^1]=1;
head[now]=Next[i];
dfs(to[i]);
}
}
s[++tot]=now;
}
void work()
{
dfs(S);
for(int i=tot;i;i--)
printf("%d\n",s[i]);
}
int main()
{
init();
work();
return 0;
}

2018.7.4

洛谷 P2731 骑马修栅栏 Riding the Fences 解题报告的更多相关文章

  1. 洛谷P2731 骑马修栅栏 Riding the Fences

    P2731 骑马修栅栏 Riding the Fences• o 119通过o 468提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题解 最新讨论 • 数据有问题题 ...

  2. 洛谷 P2731 骑马修栅栏 Riding the Fences

    P2731 骑马修栅栏 Riding the Fences 题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样 ...

  3. P2731 骑马修栅栏 Riding the Fences 题解(欧拉回路)

    题目链接 P2731 骑马修栅栏 Riding the Fences 解题思路 存图+简单\(DFS\). 坑点在于两种不同的输出方式. #include<stdio.h> #define ...

  4. 洛谷P2731 骑马修栅栏 [欧拉回路]

    题目传送门 骑马修栅栏 题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经 ...

  5. 洛谷P2731骑马修栅栏

    题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个 ...

  6. P2731 骑马修栅栏 Riding the Fences

    题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次.John能从任何一个顶 ...

  7. luogu P2731 骑马修栅栏 Riding the Fences

    入度为奇数的点,搜他. 最好邻接矩阵... #include<cstdio> #include<iostream> #define R register int using n ...

  8. 欧拉回路--P2731 骑马修栅栏 Riding the Fences

    实在懒得复制题干了 *传送 1.定义 *如果图G(有向图或者无向图)中所有边一次仅且一次行遍所有顶点的通路称作欧拉通路. *如果图G中所有边一次仅且一次行遍所有顶点的回路称作欧拉回路. *具有欧拉回路 ...

  9. USACO Section 3.3 骑马修栅栏 Riding the Fences

    题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个 ...

随机推荐

  1. mysql 数据库备份和恢复

    物理备份对比逻辑备份 物理备份是指直接复制包含数据的文件夹和文件.这种类型的备份适用于大数据量且非常重要,遇到问题需要快速回复的数据库. 逻辑备份保存能够代表数据库信息的逻辑结构(CREATE DAT ...

  2. Python构建web应用(进阶版)->对网页HTML优化逻辑显示

    本篇是承接上一篇web应用(入门级)的内容往下顺延的,阅读后将会了解HTML逻辑显示优化,如下图所示,从杂乱无章的日志文件到一个整齐的列表显示. —————————————————————————— ...

  3. MySQL(MariaDB)基础之一:编译安装

    一.cmake介绍 cmake的重要特性之一是其独立于源码的编译功能,即编译工作可以在另一个指定的目录中而非源码目录中进行,这可以保证源码目录不受任何一次编译影响,因此在同一个源码树上可以进行多次不同 ...

  4. linux的date命令使用指定时间的加减方法与异常

    在一般网页里,date命令减时间方法为: date -d '-100 days' 我的需求是,在指定时间上减8小时.按一般理解来看,命令写成如下样子(有异常错误的写法): date -d " ...

  5. Python学习之路目录(收藏整理)

    目录 Python之路[第一篇]:Python简介和入门 Python之路[第二篇]:Python基础(一) Python之路[第三篇]:Python基础(二) Python之路[第四篇]:模块    ...

  6. NO.2:自学tensorflow之路------BP神经网络编程

    引言 在上一篇博客中,介绍了各种Python的第三方库的安装,本周将要使用Tensorflow完成第一个神经网络,BP神经网络的编写.由于之前已经介绍过了BP神经网络的内部结构,本文将直接介绍Tens ...

  7. getField()与getDeclaredField()的区别

    Java的反射机制中,用Class的getField(String name)或getDelaredField(String name)可以得到目标类的指定属性,返回类型是Field. 但这两个是有区 ...

  8. [mysql] 归档工具pt-archiver,binlog格式由mixed变成row

    pt-archiver官方地址:https://www.percona.com/doc/percona-toolkit/3.0/pt-archiver.html 介绍:归档数据,比如将一年前的数据备份 ...

  9. [linux] LVM磁盘管理(针对xfs和ext4不同文件系统)

    简单来说就是:PV:是物理的磁盘分区VG:LVM中的物理的磁盘分区,也就是PV,必须加入VG,可以将VG理解为一个仓库或者是几个大的硬盘LV:也就是从VG中划分的逻辑分区如下图所示PV.VG.LV三者 ...

  10. console.log() 替代函数

    var log = console.log.bind(console); log('d')