ZOJ 1081 Within(点是否在多边形内)| 计算几何
ZOJ 1081 Within
我使用的是“射线法”:从该点出发,作一条向左的水平射线,与多边形的边的交点有奇数个则点在多边形内。
需要注意的点:
- 如果点在多边形的边上特判。
- 考虑射线与多边形的一个交点是多边形的顶点的情况,

最左边的那个顶点算一个交点,左边第二种的那个顶点算两个交点或不算交点都行(但不能算一个交点)。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 105;
int n, m;
struct point {
int x, y;
point(){}
point(int _x, int _y): x(_x), y(_y){}
point operator - (point b){
return point(x - b.x, y - b.y);
}
int operator * (point b){ // 这是叉乘
return x * b.y - y * b.x;
}
int operator % (point b){ // 这是点乘
return x * b.x + y * b.y;
}
};
bool bel(point p, point u, point v){
if((u - p) * (v - p)) return 0;
return (u - p) % (v - p) <= 0;
}
struct poly {
point p[N];
bool includ(point q){
int cnt = 0;
for(int i = 1; i <= n; i++){
if(bel(q, p[i], p[i + 1])) return 1;
int d1 = q.y - p[i].y, d2 = q.y - p[i + 1].y;
int det = (p[i] - q) * (p[i + 1] - q);
if((det >= 0 && d1 < 0 && d2 >= 0) ||
(det <= 0 && d2 < 0 && d1 >= 0)) cnt++;
}
return cnt & 1;
}
} P;
int main(){
int T = 0, u, v;
while(read(n), n){
if(T) puts("");
printf("Problem %d:\n", ++T);
read(m), read(u), read(v);
P.p[1] = P.p[n + 1] = (point){u, v};
for(int i = 2; i <= n; i++){
read(u), read(v);
P.p[i] = (point){u, v};
}
while(m--){
read(u), read(v);
if(P.includ((point){u, v})) puts("Within");
else puts("Outside");
}
}
return 0;
}
ZOJ 1081 Within(点是否在多边形内)| 计算几何的更多相关文章
- zoj 1081 判断点在多边形内
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=81Points Within Time Limit: 2 Second ...
- zoj 1081:Points Within(计算几何,判断点是否在多边形内,经典题)
Points Within Time Limit: 2 Seconds Memory Limit: 65536 KB Statement of the Problem Several dra ...
- [zoj] 1081 Points Within || 判断点是否在多边形内
原题 多组数据. n为多边形顶点数,m为要判断的点数 按逆时针序给出多边形的点,判断点是否在多边形内,在的话输出"Within",否则输出"Outside" / ...
- ZOJ 1081 Points Within | 判断点在多边形内
题目: 给个n个点的多边形,n个点按顺序给出,给个点m,判断m在不在多边形内部 题解: 网上有两种方法,这里写一种:射线法 大体的思想是:以这个点为端点,做一条平行与x轴的射线(代码中射线指向x轴正方 ...
- ZOJ 1081 Points Within( 判断点在多边形内外 )
链接:传送门 题意:给出n个点围成的一个多边形,现在有m个点p,询问p是否在多边形内,你可以认为这些点均不同且输入的顶点是多边形中相邻的两个顶点,最后的顶点与第一个相邻并且每一个顶点都连接两条边( 左 ...
- PHP 判断点是否在多边形内
如何判断一个点是否在一个多边形内,何时会用到这个场景. 我们就模拟一个真是场景.我们公司是快递公司,在本地区域有6个分点.每个分点有3-5个工人负责附近的快递派遣发送,所以根据每个点的服务区域我们就能 ...
- 结合谷歌地图多边形(polygon)与Sql Server 2008的空间数据类型计算某个点是否在多边形内的注意事项
首先在利用 GEOGRAPHY::STPolyFromText(@GeoStr, 4326) 这样的函数把字符串转换为Geography类型时,字符串里经纬度的顺序是 “经度[空格]纬度”,即“lon ...
- 2D空间中求一点是否在多边形内
参考自这篇博文:http://www.cnblogs.com/dabiaoge/p/4491540.html 一开始没仔细看做法,浪费了不少时间.下面是最终实现的效果: 大致流程: 1.随便选取多边形 ...
- 百度地图 判断marker是否在多边形内
昨天画了圆形,判marker是否存在圆形内.今天来画多边形,判断marker在多边形内. 需要引入一个js <script type="text/javascript&quo ...
随机推荐
- Laya LoaderManager小记
LoaderManager 类用于用于批量加载资源.此类是单例,不要手动实例化此类,请通过Laya.loader访问.全部队列加载完成,会派发 Event.COMPLETE 事件:如果队列中任意一个加 ...
- 经典的性能优化最佳实践 web性能权威指南 读书笔记
web性能权威指南 page 203 经典的性能优化最佳实践 无论什么网络,也不管所用网络协议是什么版本,所有应用都应该致力于消除或减 少不必要的网络延迟,将需要传输的数据压缩至最少.这两条标准是经典 ...
- 在python脚本中设置环境变量,并运行相关应用
1. 问题 在自动化应用的时候 ,有时候环境变量与运行需要不一致.这时候有两种选择: 改变节点环境变量,使得其和运行需求保持一致: 在自动化脚本中设置环境变量,其范围只在脚本运行环境中有效. 显然,当 ...
- 如何通过阿里云APP进行域名备案?阿里云备案流程需要多久?
如何通过阿里云APP进行域名备案? 1.准备备案材料(很多初次使用阿里云APP进行备案的同学会问备案需要准备哪些资料,不二版本下面就给大家一一列举出来) 个人备案需要材料: ⑴<用户网站备案授权 ...
- GlusterFS分布式存储集群-2. 使用
参考文档: Quick Start Guide:http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Quickstart/ Instal ...
- slotting filter笔记
1.slot filling是为了让用户的意图转化为明确的指令而补全信息的过程. 2.准入条件 从一个开放域转入到封闭域,或者从一个封闭域转入到另一个封闭域,中间的跳转是需要逻辑判断的,而这个逻辑判断 ...
- iOS - Bundle 资源文件包生成和常见资源文件使用
1.Bundle 文件 Bundle 文件,就是资源文件包.我们将许多图片.XIB.文本文件组织在一起,打包成一个 Bundle 文件.方便在其他项目中引用包内的资源. Bundle 文件是静态的,也 ...
- 软件工程-东北师大站-第九次作业(PSP)
1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 4.本周PSP饼状图
- 10.29 scrum meeting newbe软件团队工作分配
这次会议,我们主要讨论了目前阶段的主要任务与任务分配问题. 首先,通读代码,理解程序的运行方式是必不可少的环节.所以我们要求团队的所有成员通读代码.并且对于开发人员和测试人员,要求写出我们分配的各自模 ...
- [buaa-SE-2017]个人作业-week3
个人作业-week3:案例分析 分析产品:Bing词典 Part1:调研&评测 1.软件评测和Bug汇报 这次我选择Bing词典的原因是在于,首先我使用过的词典软件较多,平台涵盖PC端.网站. ...