[物理学与PDEs]第1章第9节 Darwin 模型 9.3 Darwin 模型
1. $\Omega$ 中 ${\bf A}={\bf A}_T+{\bf A}_L$, 其中 $\Div{\bf A}_T=0$, $\rot{\bf A}_L={\bf 0}$. 若 $$\bex {\bf A}_L\times{\bf n}={\bf 0},\mbox{ on }\p\Omega, \eex$$ 则分解唯一, 且有形式 ${\bf A}_L=-\n\psi$, 其中 $\psi$ 为 $$\beex \bea -\lap\psi=\Div{\bf A},&\quad\mbox{in }\Omega,\\ \psi=C,&\quad\mbox{on }\p\Omega \eea \eeex$$ 的解.
2. 设 ${\bf E}={\bf E}_T+{\bf E}_L$, 其中 $\Div{\bf E}_T=0$, $\rot{\bf E}_L={\bf 0}$, 且在 $\p\Omega$ 上, ${\bf E}_L\times{\bf n}={\bf 0}$, 则在 Maxwell 方程组中忽略 $\ve\cfrac{\p{\bf E}_T}{\p t}$ 得 $$\beex \bea \ve\cfrac{\p {\bf E}_L}{\p t}-\cfrac{1}{\mu}\rot{\bf B}&=-{\bf j},\\ \cfrac{\p {\bf B}}{\p t}+\rot{\bf E}_T&={\bf 0},\\ \Div{\bf E}_L&=\cfrac{\rho}{\ve},\\ \Div {\bf E}_T&=0,\\ \rot{\bf E}_L&={\bf 0},\\ \Div {\bf B}&=0. \eea \eeex$$
3. 边界条件: $$\beex \bea {\bf E}_L\times{\bf n}&={\bf 0},\\ {\bf E}_T\times {\bf n}&={\bf 0},\quad\quad\mbox{on }\p\Omega. \\ {\bf B}\cdot{\bf n}&={\bf B}_0\cdot{\bf n}_0, \eea \eeex$$
4. 初始条件: $$\bex {\bf E}_L={\bf E}_{0L},\quad{\bf B}={\bf B}_0,\quad\mbox{on }\sed{t=0}\times \Omega. \eex$$ 其中 ${\bf E}_{0L}$ 为 ${\bf E}_0$ 的纵场部分, 满足相容性条件.
5. Darwin 模型的定解问题 $\lra \forall\ t$ 求解
(1) ${\bf E}_L=-\n\phi$, 其中 $\phi$ 满足 $\cdots$;
(2) ${\bf B}$ 满足 $\cdots$;
(3) ${\bf E}_T$ 满足 $\cdots$.
6. 在一定条件下, Darwin 模型为 Maxwell 方程组的一个好的近似
(1) 当 $\cfrac{\omega l}{c}\to 0$ 时, $({\bf E}^D,{\bf B}^D)\to ({\bf E},{\bf B})$.
(2) ${\bf E}_L^D={\bf E}_L$.
[物理学与PDEs]第1章第9节 Darwin 模型 9.3 Darwin 模型的更多相关文章
- [物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...
- [物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...
- [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...
- [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...
- [物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\ ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1. 位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2. 位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量
1. 引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...
- [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...
- [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构
一维理想反应流体力学方程组是一阶拟线性双曲组.
随机推荐
- 英语口语练习系列-C05-水电
<登幽州台歌>·陈子昂 陈子昂(公元659-公元700年),唐代文学家,初唐诗文革新人物之一. Num 诗句 1 前不见古人, 2 后不见来者. 3 念天地之悠悠, 4 独怆然而涕下! T ...
- 研究好vif 和vshow
另外从源头上处理的???,怎么自己排查出错误??必须 ??https://www.jb51.net/article/124116.htm
- 014_浅说 XSS和CSRF
在 Web 安全领域中,XSS 和 CSRF 是最常见的攻击方式.本文将会简单介绍 XSS 和 CSRF 的攻防问题. 声明:本文的示例仅用于演示相关的攻击原理 XSS XSS,即 Cross Sit ...
- HTML多图无缝循环翻页效果
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- yum 彻底删除nodejs,重新安装
第一步 用自带的包管理先删除一次 yum remove nodejs npm -y1手动删除残留 进入 /usr/local/lib 删除所有 node 和 node_modules文件夹进入 /us ...
- Outlook插件开发(非VSTO),欢迎交流
https://www.cnblogs.com/Charltsing/p/OutlookSample.html 联系QQ:564955427 最近写了个Outlook插件,实现了读取邮件联系人的功能, ...
- 输入输出流ObjectInputStream、ObjectOutputStream(对象序列化与反序列化)
对象的输入输出流 : 主要的作用是用于写入对象信息与读取对象信息. 对象信息一旦写到文件上那么对象的信息就可以做到持久化了 对象的输出流: ObjectOutputStream 对象的输入流: Ob ...
- 数据标记系列——图像分割 & PolygonRNN++(二)
实践 1.export PATH=~/anaconda3/bin:$PATH 2.Anaconda3 中创建新环境 Conda create –name=labelme_polyrnn_pp pyth ...
- vue实现点击展开,点击收起
安装vue的步骤在这里就不进行赘述了,下面直接进入正题 首先定义一下data里面的数据: data () { return { toLearnList:[ 'html','css','javascri ...
- Qt QComboBox下拉框文字重叠解决方法
如果QComboBox下拉框文字重叠,在设置好样式之后,在后面加 setView(new QListView())即可; m_comboRate = new QComboBox(); m_comboR ...