loss function
什么是loss?
loss: loss是我们用来对模型满意程度的指标。loss设计的原则是:模型越好loss越低,模型越差loss越高,但也有过拟合的情况。
loss function: 在分类问题中,输入样本经过含权重矩阵θ的模型后会得出关于各个类别的分值,如何通过分值与样本的标签来得到我们对模型的满意程度就是Loss function的主要工作了。训练过程中通过调整参数矩阵θ来降低loss,使用模型更优。多分类问题中常用Softmax分类器与多类SVM分类器。
Softmax分类器
Softmax与logistict回归
Softmax分类器将类别分值用负对数转换为概率来表示,相对于multiclass-SVM的输出更为直观。
Softmax分类器的损失函数为交叉熵损失 (cross-entropy loss),即通常所说的Softmax loss。logistic回归是用来解决二分类问题的,其损失函数与Softmax与有很相似的形式。
Softmax的损失函数: //1表示指示函数,即真值返回1,否则返回0
\begin{align}J(\theta) = - \frac{1}{m} \left[ \sum_{i=1}^{m} \sum_{j=1}^{k} 1\left\{y^{(i)} = j\right\} \log \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{ \theta_l^T x^{(i)} }}\right]\end{align}
logistic回归的损失函数:
\begin{align}
J(\theta) =
-\frac{1}{m} \left[ \sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log (1-h_\theta(x^{(i)})) \right]
\end{align}
可以看出,将(1)式中k=2即可得到(2)式
Softmax对样本x的分类结果(假设函数):
\begin{align}
h_\theta(x^{(i)}) =
\begin{bmatrix}
p(y^{(i)} = 1 | x^{(i)}; \theta) \
p(y^{(i)} = 2 | x^{(i)}; \theta) \
\vdots \
p(y^{(i)} = k | x^{(i)}; \theta)
\end{bmatrix}
=
\frac{1}{ \sum_{j=1}^{k}{e^{ \theta_j^T x^{(i)} }} }
\begin{bmatrix}
e^{ \theta_1^T x^{(i)} } \
e^{ \theta_2^T x^{(i)} } \
\vdots \
e^{ \theta_k^T x^{(i)} } \
\end{bmatrix}
\end{align}
logistic回归的分类结果(假设函数):
\begin{align}
h_\theta(x) = \frac{1}{1+\exp(-\theta^Tx)},
\end{align}
但(3)式与(4)式有什么关系呢?
原来Softmax预测出每个类别的概率具有“参数冗余”的特性。“参数冗余”是指:若矩阵θ为代价函数的极小值点,那么θ-Ψ也为代价函数的极小值点。(ψ为向量,并且矩阵-向量=矩阵每个列向量-向量)
\begin{align}
p(y^{(i)} = j | x^{(i)} ; \theta)
&= \frac{e^{(\theta_j-\psi)^T x^{(i)}}}{\sum_{l=1}^k e^{ (\theta_l-\psi)^T x^{(i)}}} \
&= \frac{e^{\theta_j^T x^{(i)}} e^{-\psi^Tx^{(i)}}}{\sum_{l=1}^k e^{\theta_l^T x^{(i)}} e^{-\psi^Tx^{(i)}}} \
&= \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{ \theta_l^T x^{(i)}}}.
\end{align}
这时,令ψ=θ1、k=2,可得到(3) 等价于(4)的结论
所以,Softmax其实是logistic regression将二分类问题推广到多分类问题的一般形式。
但是Softmax分类器与k个logistic回归分类器还是有区别的:
通常,当k个类别之间互斥时使用k=k的Softmax分类器,当k个类别之间与交集时使用k个logistic回归分类器。
Softmax分类器为什么要正则化损失项?
求解loss最小值时往往不是简单利用“参数冗余”将θ1=0,而是加入权重衰减(正则化损失)来惩罚过大的参数值。加入正则化损失后的代价函数为:
\begin{align}\notag J(\theta) = - \frac{1}{m} \left[ \sum_{i=1}^{m} \sum_{j=1}^{k} 1\left\{y^{(i)} = j\right\} \log \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{ \theta_l^T x^{(i)} }} \right] + \frac{\lambda}{2} \sum_{i=1}^k \sum_{j=0}^n \theta_{ij}^2\end{align}
其中,第二项为正则化损失荐,加入该项的加一个好处是将代价函数变为一个凸函数。
简单实例
在一个三类别模型预测的过程中,假设输出的分值向量为[1, -2, 0]
则分类计算过过程: [1,-2, 0] => [e1, e-2, e0]=[2.71, 0.14, 1]//熵值化 => [0.7, 0.04, 0.26] //归一化为概率
算法实践
后续补充
Multiclass SVM
基本思想:正常确类别的分值比错误类别的分值高出一个间距(margin)
Multiclass SVM分类器的损失函数为hinge loss,也称为SVM loss。
hinge loss
算法实践
已知
- 在一个三类别模型预测的过程中,假设输出的分值向量为[13, -7, 11]
- 我们知道标签为1,即第一个类别为正确类别
- \(\Delta=10\)
计算过程
因为\(y_{i}\)=1, 所以\(j只能=2、3\)
\[L_{2}=max(0,-7-13+10)=0\]
\[L_{3}=max(0,11-13+10)=8\]
所以,
\[L_{i}=0+8=8\]
从上面的计算过程可以看出SVM的损失函数想要正确分类类别\(y_{i}\)的分数比不正确类别分数高,而且至少要高\(\Delta\)。如果不满足这点,就开始计算损失值。
正则化损失
提高模型泛化能力,避免过拟合。
从公式上来看:
- 若两个等比例的权重,权重的范数越小越好
- 若两个权重范数相等,权重的系数大小分布越分均等越好
直观来看:
从直观上来看,这是因为w_2的权重值更小且更分散。既然L2惩罚倾向于更小更分散的权重向量,这就会鼓励分类器最终将所有维度上的特征都用起来,而不是强烈依赖其中少数几个维度。
MutiSVM VS SVM
未完待续
补充实验
reference:
loss function的更多相关文章
- Derivative of the softmax loss function
Back-propagation in a nerual network with a Softmax classifier, which uses the Softmax function: \[\ ...
- loss function与cost function
实际上,代价函数(cost function)和损失函数(loss function 亦称为 error function)是同义的.它们都是事先定义一个假设函数(hypothesis),通过训练集由 ...
- 损失函数(Loss Function) -1
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数 ...
- 【caffe】loss function、cost function和error
@tags: caffe 机器学习 在机器学习(暂时限定有监督学习)中,常见的算法大都可以划分为两个部分来理解它 一个是它的Hypothesis function,也就是你用一个函数f,来拟合任意一个 ...
- 惩罚因子(penalty term)与损失函数(loss function)
penalty term 和 loss function 看起来很相似,但其实二者完全不同. 惩罚因子: penalty term的作用是把受限优化问题转化为非受限优化问题. 比如我们要优化: min ...
- 论文笔记之: Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function
Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function CVPR 2 ...
- [machine learning] Loss Function view
[machine learning] Loss Function view 有关Loss Function(LF),只想说,终于写了 一.Loss Function 什么是Loss Function? ...
- [基础] Loss function (二)
Loss function = Loss term(误差项) + Regularization term(正则项),上次写的是误差项,这次正则项. 正则项的解释没那么直观,需要知道不适定问题,在经典的 ...
- [基础] Loss function(一)
Loss function = Loss term(误差项) + Regularization term(正则项),我们先来研究误差项:首先,所谓误差项,当然是误差的越少越好,由于不存在负误差,所以为 ...
随机推荐
- 织梦Dedecms使用Nginx的安全设置
首先需要说明的是,任何程序都是有漏洞的,我们需要做好一些必要的防范,来减少由于程序漏洞造成的损失.织梦的漏洞多,这个是很多人的想法.不过大家如果做好了织梦系统的文件夹权限什么的设置,很多漏洞也是用不上 ...
- 使用Nexus搭建Maven本地仓库
阅读目录 序 Nexus 本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. 文章是哥(mephisto)写的,SourceLink 序 在工作中可能存在有 ...
- head/tail实现
只实现了head/tail的基本功能,默认显示十行及-n参数. 一.使用带缓冲的系统调用. write/read等系统调用是不带缓冲的,可以包装一层,使其带缓冲. t ...
- socket Bio demo
最近在做socket通信,最开始是基于Bio开发(其实开发的时候也不知道这种是基于BIO).但是问题来了,客户端发的报文,服务端接收会少,为了解决问题,只能恶补一下相关知识. 服务端: import ...
- Redux状态管理方法与实例
状态管理是目前构建单页应用中不可或缺的一环,也是值得花时间学习的知识点.React官方推荐我们使用Redux来管理我们的React应用,同时也提供了Redux的文档来供我们学习,中文版地址为http: ...
- WinForm TreeView递归加载
这个其实通俗一点讲就是的树状分支图 首先利用递归添加数据 数据放入 treeView1.Nodes.Add() 中 public Form3() { InitializeComponent(); Tr ...
- codevs 3288 积木大赛
题目描述 Description 春春幼儿园举办了一年一度的"积木大赛".今年比赛的内容是搭建一座宽度为 n 的大厦,大厦可以看成由 n 块宽度为1的积木组成,第i块积木的最终高度 ...
- 从点云到网格(三)Poisson重建
Possion重建是Kazhdan等2006年提出的网格重建方法[1].Possion重建的输入是点云及其法向量,输出是三维网格.Poisson有公开的源代码[2].PCL中也有Poisson的实现. ...
- 基于C/S架构的3D对战网络游戏C++框架_01服务器端与客户端需求分析
本系列博客主要是以对战游戏为背景介绍3D对战网络游戏常用的开发技术以及C++高级编程技巧,有了这些知识,就可以开发出中小型游戏项目或3D工业仿真项目. 笔者将分为以下三个部分向大家介绍(每日更新): ...
- jquery中attr和prop的区别
在高版本的jquery引入prop方法后,什么时候该用prop?什么时候用attr?它们两个之间有什么区别?这些问题就出现了. 关于它们两个的区别,网上的答案很多.这里谈谈我的心得,我的心得很简单: ...