洛谷P2764 最小路径覆盖问题
有向无环图的最小路径点覆盖
最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点。
有定理:顶点数-路径数=被覆盖的边数。
要理解的话可以从两个方向:
假设DAG已经被n条路径覆盖,那么任意一条路径又有 顶点数-1=边数。那么对所有路径等式两边求和,每条路径的顶点数之和=所有点数,-1的和=路径数,每条路径的边数之和=被覆盖的边数。。这样上面的定理就成立了。
还有一种方法,我们要先引入二分图
我们把原图中的点拆成出点(边从该点出)和入点(边从该点入),即原图点x在二分图中对应出点x,入点x+n。
原图中的边(x,y)对应二分图中的(x,y+n)。我们每次选择路径,因为边不能相交,所以对于一个点,只有一个入和一个出,这显然是一个匹配问题。
选择的边(x,y)相当于从源点s到x,从x到y+n,从y+n到汇点t有了单位流量。
特别的,如果一个点是路径的终点,那么他没有出度,即该点二分匹配失败。
可以显然得出,最后匹配失败的点数就是路径数。
因为源点相连的点一定有n个,所以有 顶点数-路径数=二分图最大匹配。
且由上述概念得二分图最大匹配即为路径选择的边数(被覆盖的边数)
所以我们把题目给的点拆开跑最大流就可以啦!
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 505;
const int M = 6005;
int n, m, cnt, head[N], depth[N], to[N], vis[N];
struct Edge { int v, next, f; } edge[M<<5];
void addEdge(int a, int b, int f){
edge[cnt].v = b, edge[cnt].f = f, edge[cnt].next = head[a], head[a] = cnt ++;
edge[cnt].v = a, edge[cnt].f = 0, edge[cnt].next = head[b], head[b] = cnt ++;
}
bool bfs(){
full(depth, 0);
queue<int> q;
depth[0] = 1, q.push(0);
while(!q.empty()){
int s = q.front(); q.pop();
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(!depth[u] && edge[i].f > 0){
depth[u] = depth[s] + 1;
q.push(u);
}
}
}
return depth[2 * n + 1] != 0;
}
int dfs(int s, int a){
if(s == 2 * n + 1) return a;
int flow = 0;
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(depth[u] == depth[s] + 1 && edge[i].f > 0){
int k = dfs(u, min(a, edge[i].f));
if(k > 0){
flow += k, a -= k, edge[i].f -= k, edge[i^1].f += k, to[s] = u;
if(s != 0) vis[u - n] = true;
}
}
if(!a) break;
}
if(a) depth[s] = -1;
return flow;
}
int dinic(){
int ret = 0;
while(bfs()){
ret += dfs(0, INF);
}
return ret;
}
int main(){
full(head, -1);
n = read(), m = read();
for(int i = 1; i <= n; i ++)
addEdge(0, i, 1), addEdge(i + n, 2 * n + 1, 1);
for(int i = 0; i < m; i ++){
int u = read(), v = read();
addEdge(u, v + n, 1);
}
int ans = n - dinic();
for(int i = 1; i <= n; i ++){
if(!vis[i]){
int cur = i;
printf("%d ", cur);
while(to[cur] != 2 * n + 1 && to[cur] != 0){
printf("%d ", to[cur] - n), cur = to[cur] - n;
}
puts("");
}
}
printf("%d\n", ans);
return 0;
}
洛谷P2764 最小路径覆盖问题的更多相关文章
- 洛谷 P2764 最小路径覆盖问题 解题报告
P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...
- 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】
题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...
- 【刷题】洛谷 P2764 最小路径覆盖问题
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...
- 洛谷P2764 最小路径覆盖问题(最大流)
传送门 先说做法:把原图拆成一个二分图,每一个点被拆成$A_i,B_i$,若原图中存在边$(u,v)$,则连边$(A_u,B_v)$,然后$S$对所有$A$连边,所有$B$对$T$连边,然后跑一个最大 ...
- 洛谷 P2764 最小路径覆盖问题【匈牙利算法】
经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...
- 洛谷 P2764(最小路径覆盖=节点数-最大匹配)
给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别 ...
- 洛谷P2764 最小路径覆盖问题(二分图)
题意 给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交 输出方案 Sol 定理:路径覆盖 = 定点数 - 二分图最大匹配数 直接上匈牙利 输出方案的话就不断的从一个点跳匹配边 # ...
- 洛谷 [P2764]最小路径覆盖问题
二分图应用模版 #include <iostream> #include <cstdio> #include <algorithm> #include <cs ...
- 洛谷-p2764(最小路径覆盖)(网络流24题)
#include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...
随机推荐
- An error occurred while updating the entries. See the inner exception for details.
EF插入或更新数据时出现错误提示:An error occurred while updating the entries. See the inner exception for details.的 ...
- Linux下安装redis的详细过程(redis版本为4.0.10)
1.安装redis步骤 1.推荐进入到linux路径/usr/local/src 2.$ wget http://download.redis.io/releases/redis-4.0.10.tar ...
- mysql处理重复数据
有些 MySQL 数据表中可能存在重复的记录,有些情况我们允许重复数据的存在,但有时候我们也需要删除这些重复的数据. 防止表中出现重复数据 你可以在MySQL数据表中设置指定的字段为 PRIMARY ...
- c++局部变量在外可用的方法
C++的局部变量在作用域结束后,一般都会被回收.如下面这段代码 map<a*, b*> _map; void fun() { a _a; b _b; _map[&_a] = &am ...
- 软工网络15团队作业4——Alpha阶段敏捷冲刺
Deadline: 2018-4-29 10:00PM,以提交至班级博客时间为准. 根据以下要求,团队在日期区间[4.16,4.29]内,任选8天进行冲刺,冲刺当天晚10点前发布一篇随笔,共八篇. 另 ...
- VMware虚拟机与Windows文件共享
开发中,我们经常的需求是这样的:我想再Windows中进行快捷开发,但是想在linux中运行,那么需要将文件方便在linux中管理,基本可以分成两种方式: 1. 使用网络工具:vmware_tool工 ...
- MySQL数据性能优化-修改方法与步骤
原文:http://bbs.landingbj.com/t-0-240421-1.html 数据库优化应该是每个设计到数据库操作应用必须涉及到的操作. 经常调试修改数据库性能主要有三个方面 1.MyS ...
- pojo类自动生成序列化ID
自动生成序列化ID
- Bootstrap 面板(Panels)
一.面板组件用于把 DOM 组件插入到一个盒子中.创建一个基本的面板,只需要向 <div> 元素添加 class .panel 和 class .panel-default 即可,如下面的 ...
- Codeforces 1154F Shovels Shop
题目链接:http://codeforces.com/problemset/problem/1154/F 题目大意: 商店有n把铲子,欲购k把,现有m种优惠,每种优惠可使用多次,每种优惠(x, y)表 ...