CNN中最重要的就是参数了,包括W,b。 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值。参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢?

所有的初始化方法都定义在tensorflow/python/ops/init_ops.py

1、tf.constant_initializer()

也可以简写为tf.Constant()

初始化为常数,这个非常有用,通常偏置项就是用它初始化的。

由它衍生出的两个初始化方法:

a、 tf.zeros_initializer(), 也可以简写为tf.Zeros()

b、tf.ones_initializer(), 也可以简写为tf.Ones()

例:在卷积层中,将偏置项b初始化为0,则有多种写法:

conv1 = tf.layers.conv2d(batch_images,
filters=64,
kernel_size=7,
strides=2,
activation=tf.nn.relu,
kernel_initializer=tf.TruncatedNormal(stddev=0.01)
bias_initializer=tf.Constant(0),
)

或者:

bias_initializer=tf.constant_initializer(0)

或者:

bias_initializer=tf.zeros_initializer()

或者:

bias_initializer=tf.Zeros()

例:如何将W初始化成拉普拉斯算子?

value = [1, 1, 1, 1, -8, 1, 1, 1,1]
init = tf.constant_initializer(value)
W= tf.get_variable('W', shape=[3, 3], initializer=init)

2、tf.truncated_normal_initializer()

或者简写为tf.TruncatedNormal()

生成截断正态分布的随机数,这个初始化方法好像在tf中用得比较多。

它有四个参数(mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32),分别用于指定均值、标准差、随机数种子和随机数的数据类型,一般只需要设置stddev这一个参数就可以了。

例:

conv1 = tf.layers.conv2d(batch_images,
filters=64,
kernel_size=7,
strides=2,
activation=tf.nn.relu,
kernel_initializer=tf.TruncatedNormal(stddev=0.01)
bias_initializer=tf.Constant(0),
)

或者:

conv1 = tf.layers.conv2d(batch_images,
filters=64,
kernel_size=7,
strides=2,
activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)
bias_initializer=tf.zero_initializer(),
)

3、tf.random_normal_initializer()

可简写为 tf.RandomNormal()

生成标准正态分布的随机数,参数和truncated_normal_initializer一样。

4、random_uniform_initializer = RandomUniform()

可简写为tf.RandomUniform()

生成均匀分布的随机数,参数有四个(minval=0, maxval=None, seed=None, dtype=dtypes.float32),分别用于指定最小值,最大值,随机数种子和类型。

5、tf.uniform_unit_scaling_initializer()

可简写为tf.UniformUnitScaling()

和均匀分布差不多,只是这个初始化方法不需要指定最小最大值,是通过计算出来的。参数为(factor=1.0, seed=None, dtype=dtypes.float32)

max_val = math.sqrt(3 / input_size) * factor

这里的input_size是指输入数据的维数,假设输入为x, 运算为x * W,则input_size= W.shape[0]

它的分布区间为[ -max_val, max_val]

6、tf.variance_scaling_initializer()

可简写为tf.VarianceScaling()

参数为(scale=1.0,mode="fan_in",distribution="normal",seed=None,dtype=dtypes.float32)

scale: 缩放尺度(正浮点数)

mode:  "fan_in", "fan_out", "fan_avg"中的一个,用于计算标准差stddev的值。

distribution:分布类型,"normal"或“uniform"中的一个。

当 distribution="normal" 的时候,生成truncated normal   distribution(截断正态分布) 的随机数,其中stddev = sqrt(scale / n) ,n的计算与mode参数有关。

如果mode = "fan_in", n为输入单元的结点数;

如果mode = "fan_out",n为输出单元的结点数;

如果mode = "fan_avg",n为输入和输出单元结点数的平均值。

当distribution="uniform”的时候 ,生成均匀分布的随机数,假设分布区间为[-limit, limit],则

limit = sqrt(3 * scale / n)

7、tf.orthogonal_initializer()

简写为tf.Orthogonal()

生成正交矩阵的随机数。

当需要生成的参数是2维时,这个正交矩阵是由均匀分布的随机数矩阵经过SVD分解而来。

8、tf.glorot_uniform_initializer()

也称之为Xavier uniform initializer,由一个均匀分布(uniform distribution)来初始化数据。

假设均匀分布的区间是[-limit, limit],则

limit=sqrt(6 / (fan_in + fan_out))

其中的fan_in和fan_out分别表示输入单元的结点数和输出单元的结点数。

9、glorot_normal_initializer()

也称之为 Xavier normal initializer. 由一个 truncated normal distribution来初始化数据.

stddev = sqrt(2 / (fan_in + fan_out))

其中的fan_in和fan_out分别表示输入单元的结点数和输出单元的结点数。

tensorflow 1.0 学习:参数初始化(initializer)的更多相关文章

  1. tensorflow 1.0 学习:用CNN进行图像分类

    tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化. 任务:花卉分类 版本:tensorflow 1 ...

  2. tensorflow 1.0 学习:参数和特征的提取

    在tf中,参与训练的参数可用 tf.trainable_variables()提取出来,如: #取出所有参与训练的参数 params=tf.trainable_variables() print(&q ...

  3. tensorflow 1.0 学习:十图详解tensorflow数据读取机制

    本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找 ...

  4. tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)

    池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( in ...

  5. tensorflow 1.0 学习:卷积层

    在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化. 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d conv2d( input, filter, strides, ...

  6. tensorflow 2.0 学习(四)

    这次的mnist学习加入了测试集,看看学习的准确率,代码如下 # encoding: utf-8 import tensorflow as tf import matplotlib.pyplot as ...

  7. tensorflow 1.0 学习:模型的保存与恢复(Saver)

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...

  8. tensorflow 1.0 学习:模型的保存与恢复

    将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情.tf里面提供模型保存的是tf.train.Saver()模块. 模型保存,先要创建一个Saver对象:如 saver=tf. ...

  9. Tensorflow 2.0 学习资源

    我从换了新工作才开始学习使用Tensorflow,感觉实在太难用了,sess和graph对 新手很不友好,各种API混乱不堪,这些在tf2.0都有了重大改变,2.0大量使用keras的 api,初步使 ...

随机推荐

  1. vue生命周期-mounted和created的区别

    详情请查看:https://blog.csdn.net/xdnloveme/article/details/78035065 自己做个总结: beforeCreate 创建之前:已经完成了 初始化事件 ...

  2. BSOJ3760||洛谷P1453 城市环路 题解

    城市环路 Description 一座城市,往往会被人们划分为几个区域,例如住宅区.商业区.工业区等等.B市就被分为了以下的两个区域——城市中心和城市郊区.在着这两个区域的中间是一条围绕B市的环路,环 ...

  3. 20155312 张竞予 Exp3 免杀原理与实践

    Exp3 免杀原理与实践 目录 基础问题回答 (1)杀软是如何检测出恶意代码的? (2)免杀是做什么? (3)免杀的基本方法有哪些? 实验总结与体会 实践过程记录 正确使用msf编码器,msfveno ...

  4. C++矩阵加速经典题目:Warcraft III 守望者的烦恼 [vijos 1067]

    Warcraft III 守望者的烦恼 背景 守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫"闪烁", ...

  5. C/C++中volatile关键字详解

    1. 为什么用volatile? C/C++ 中的 volatile 关键字和 const 对应,用来修饰变量,通常用于建立语言级别的 memory barrier.这是 BS 在 "The ...

  6. FileReader实现图片预览,并上传(js代码)

    var rFilter = /^(image\/bmp|image\/gif|image\/jpeg|image\/png|image\/tiff)$/i; //控制格式 var iMaxFilesi ...

  7. 爸爸在家庭中最应该扮演的角色,是爸爸本爸!zz

    不然呢?还是爸爸应该cosplay什么物种?细想下,爸爸这个角色很多人是不称职的,经常加班或完全不管孩子的隐形人.肆意把脾气撒在孩子身上的炸弹君.动不动就不耐烦的刺猬......孩子经常挂在嘴边的不是 ...

  8. 学习Acegi应用到实际项目中(12)- Run-As认证服务

    有这样一些场合,系统用户必须以其他角色身份去操作某些资源.例如,用户A要访问资源B,而用户A拥有的角色为AUTH_USER,资源B访问的角色必须为AUTH_RUN_AS_DATE,那么此时就必须使用户 ...

  9. mysql正则表达式无法识别\d

    无法识别\d 修改为[0-9]就ok

  10. Python开发——8.模块

    一.模块 1.模块 (1)定义:一个.py文件就是一个模块 (2)原因:为了防止程序代码越来越长,对函数进行分组放到不同的文件夹里. (3)优点:提高代码的可维护性:模块编写完毕可以被别人引用,也可以 ...