嘟嘟嘟




遇到这种(看似)构造的题,我好像一般都做不出来……




然而这题正解是高斯消元解异或方程组……

首先我们容易列出式子a[i][j] ^ a[i - 1][j] ^ a[i + 1][j] ^ a[i][j - 1] ^ a[i][j + 1] = 0。于是我们列出所有像这样的\(n * m\)个式子,然后\(O((nm) ^ 3)\)高斯消元加bitset优化就过了。




讲真我还不会高斯消元解异或方程组,就现学了一下。其实就是把运算改成了异或,然后bitset可以把一个一个消改成一行和一行消。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
#include<ctime>
#include<bitset>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1605;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} int n, m;
const int dx[] = {-1, 0, 1, 0, 0}, dy[] = {0, 1, 0, -1, 0};
bitset<maxn> f[maxn]; In int num(int x, int y)
{
return (x - 1) * m + y;
} int ans[maxn];
In void Gauss(int n)
{
for(int i = 1; i <= n; ++i)
{
int pos = i;
while(pos <= n && !f[pos][i]) ++pos;
if(pos == n + 1) continue;
swap(f[i], f[pos]);
for(int j = i + 1; j <= n; ++j) if(f[j][i]) f[j] ^= f[i];
}
for(int i = n; i; --i)
if(!f[i][i]) ans[i] = 1;
else for(int j = i + 1; j <= n; ++j) if(f[i][j]) ans[i] ^= ans[j];
} int main()
{
n = read(), m = read();
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
for(int k = 0; k <= 4; ++k)
{
int x = i + dx[k], y = j + dy[k];
if(x < 1 || x > n || y < 1 || y > m) continue;
f[num(i, j)][num(x, y)] = 1;
}
// for(int i = 1; i <= n; ++i) cout << f[i].to_string() << endl;
Gauss(n * m);
for(int i = 1; i <= n; ++i)
{
for(int j = 1; j <= m; ++j) write(ans[num(i, j)]), space;
enter;
}
return 0;
}

[CQOI2014]和谐矩阵的更多相关文章

  1. BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )

    偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...

  2. 【高斯消元】BZOJ3503 [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 Time Limit: 10 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 1197  Solved: ...

  3. BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元

    BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...

  4. bzoj千题计划105:bzoj3503: [Cqoi2014]和谐矩阵(高斯消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3503 b[i][j] 表示i对j是否有影响 高斯消元解异或方程组 bitset优化 #include ...

  5. 3503: [Cqoi2014]和谐矩阵

    3503: [Cqoi2014]和谐矩阵 链接 分析: 对于每个点,可以列出一个方程a[i][j]=a[i][j-1]^a[i][j+1]^a[i-1][j]^a[i+1][j],于是可以列出n*m个 ...

  6. P3164 [CQOI2014]和谐矩阵

    P3164 [CQOI2014]和谐矩阵 乱写能AC,暴力踩标程(雾 第一眼 诶这题能暴力枚举2333!!! 第二眼 诶这题能高斯消元!那只需要把每个位置的数给设出来就能够列方程了!然后就可以\(O( ...

  7. BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)

    Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...

  8. Luogu3164 CQOI2014 和谐矩阵 异或高斯消元

    传送门 题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数.$N , M \leq 40$ 可以依据题目中的条件列出有 ...

  9. bzoj 3503: [Cqoi2014]和谐矩阵【高斯消元】

    如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0 所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可 #include<iostream> #include ...

  10. P3164 [CQOI2014]和谐矩阵(高斯消元 + bitset)

    题意:构造一个$n*m$矩阵 使得每个元素和上下左右的xor值=0 题解:设第一行的每个元素值为未知数 可以依次得到每一行的值 然后把最后一行由题意条件 得到$m$个方程 高斯消元解一下 bitset ...

随机推荐

  1. JSP使用过滤器防止SQL注入

    什么是SQL注入攻击?引用百度百科的解释: sql注入_百度百科: 所谓SQL注入,就是通过把SQL命令插入到Web表单提交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令.具 ...

  2. Java 原生网络编程.

    一.概念 Java 语言从其诞生开始,就和网络紧密联系在一起.在 1995 年的 Sun World 大会上,当时占浏览器市场份额绝对领先的网景公司宣布在浏览器中支持Java,从而引起一系列的公司产品 ...

  3. angular $index获取ng-repeat的上一条数据

    <div ng-repeat="item in dataList" ng-click="func($index,$index-1)"></di ...

  4. K8S 部署 ingress-nginx (三) 启用 https

    部署 https 证书 cd ~/ingress # 生成私钥 tls.key, 密钥位数是 2048 openssl genrsa -out tls.key 2048 # 使用 tls.key 生成 ...

  5. 学习 Docker 操作系统版本选择

    近来有时间一直在捣鼓 Docker.因为服务器选择的是 CentOS 版本,所以实验的环境选择的一直是 CentOS.如果是个人玩 Docker,优先选择 ubuntu.如果需要选择 CentOS 的 ...

  6. zTree 节点文字过多处理方法

    zTree setting.view.addDiyDom 方法可以实现自定义控件,指定节点显示内容.因此需要自己实现addDiyDom方法. 如果树节点不显示checkbox ,处理方法为: func ...

  7. Caused by: Java.lang.NoSuchMethodError: javax.persistence.JoinColumn.foreignKey()Ljavax/persistence/ForeignKey;

    Caused by: Java.lang.NoSuchMethodError: javax.persistence.JoinColumn.foreignKey()Ljavax/persistence/ ...

  8. WebStorm File Watchers配置将.less文件编译后的.css输出至指定目录

    Arguments:其实是命令行输入“lessc file.less file.css”后者指定路径 Output Paths to refresh:刷新changed后.css文件

  9. 使用git将Android源码上传到github

    下面举Android的Browser源码通过git保存到github上 首先在github.com官网new repository一个仓库 在Repository name哪里填入Browser然后创 ...

  10. Java:Hibernate报错记录:Error executing DDL via JDBC Statement

    想着写一篇hibernate的博文,于是准备从头开始,从官网下了最新的稳定版本来做讲述. 结果利用hibernate自动建表的时候发生下面这个问题. 我很纳闷,之前用低版本一点的没有发生这个问题啊. ...