bzoj2194 快速傅里叶之二
题意:对于k = 0 ... n求
解:
首先把i变成从0开始
我们发现a和b的次数(下标)是成正比例的,这不可,于是反转就行了。
反转b的话,会发现次数和是n + k,这不可。
反转a就很吼了。
这个东西恰好是卷积出来的第n - k项的系数。
所以我们把a串反转,然后用a与b卷积,最后再反转输出即可。
/**************************************************************
Problem: 2194
Language: C++
Result: Accepted
Time:133643896 ms
Memory:14342474884 kb
****************************************************************/ #include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring> const int N = ;
const double pi = 3.1415926535897932384626; struct cp {
double x, y;
cp(double X = , double Y = ) {
x = X;
y = Y;
}
inline cp operator +(const cp &w) const {
return cp(x + w.x, y + w.y);
}
inline cp operator -(const cp &w) const {
return cp(x - w.x, y - w.y);
}
inline cp operator *(const cp &w) const {
return cp(x * w.x - y * w.y, x * w.y + y * w.x);
}
}a[N << ], b[N << ]; int r[N << ]; inline void FFT(int n, cp *a, int f) {
for(int i = ; i < n; i++) {
if(i < r[i]) {
std::swap(a[i], a[r[i]]);
}
} for(int len = ; len < n; len <<= ) {
cp Wn(cos(pi / len), f * sin(pi / len));
for(int i = ; i < n; i += (len << )) {
cp w(, );
for(int j = ; j < len; j++) {
cp t = a[i + len + j] * w;
a[i + len + j] = a[i + j] - t;
a[i + j] = a[i + j] + t;
w = w * Wn;
}
}
} if(f == -) {
for(int i = ; i <= n; i++) {
a[i].x /= n;
}
}
return;
} int main() {
int n;
scanf("%d", &n);
n--;
for(int i = ; i <= n; i++) {
scanf("%lf%lf", &a[n - i].x, &b[i].x);
} int len = , lm = ;
while(len <= (n << )) {
len <<= ;
lm++;
}
for(int i = ; i <= len; i++) {
r[i] = (r[i >> ] >> ) | ((i & ) << (lm - ));
} FFT(len, a, );
FFT(len, b, );
for(int i = ; i <= len; i++) {
a[i] = a[i] * b[i];
}
FFT(len, a, -); for(int i = ; i <= n; i++) {
printf("%d\n", (int)(a[n - i].x + 0.5));
} return ;
}
AC代码
bzoj2194 快速傅里叶之二的更多相关文章
- 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2978 Solved: 1523[Submit][Status][Di ...
- 【BZOJ】【2194】快速傅里叶之二
FFT c[k]=sigma a[i]*b[i-k] 这个形式不好搞…… 而我们熟悉的卷积的形式是这样的 c[k]=sigma a[i]*b[k-i]也就是[下标之和是定值] 所以我们将a数组反转一下 ...
- BZOJ 2194 快速傅里叶之二
fft. #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> ...
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- 【BZOJ2194】快速傅立叶之二
[BZOJ2194]快速傅立叶之二 Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. ...
- [bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...
- BZOJ2194:快速傅立叶之二(FFT)
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- bzoj2194: 快速傅立叶之二
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- 2018.11.18 bzoj2194: 快速傅立叶之二(fft)
传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...
随机推荐
- Java 线程的生命周期
当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态,在线程的生命周期中,它要经过新建(New).就绪(Runnable).运行(Running).阻塞(Blocked)和死 ...
- 【git】git add 添加错文件 撤销
git add 添加 多余文件 这样的错误是由于, 有的时候 可能 git add . (空格+ 点) 表示当前目录所有文件,不小心就会提交其他文件 git add 如果添加了错误的文件的话 撤销操 ...
- Appscanner实验还原code3
# Author: Baozi #-*- codeing:utf-8 -*- import _pickle as pickle from sklearn import ensemble import ...
- Golang的日志处理
整个看了一圈下来,感觉Golang的日志包在管理多线程安全的情况下,提供了最小粒度的工具.并没有提供什么复杂的过滤器之类的生成. 实现了一个demo来记录一下日志分类日志打印等实现: package ...
- IWMS后台上传文章,嵌入音频文件代码
<object width="260" height="69" classid="clsid:6bf52a52-394a-11d3-b153-0 ...
- vue樣式綁定
vue的樣式可以使得class,style不僅可以綁定文本,而且可以綁定數組和對象. 使用對象{} 使用數組 綁定對象 使用computed屬性, 使用內聯樣式.
- 三、checkedListBoxControl
一.checkedListBoxControl的使用全选 private void InitDate() { CheckedListBoxItem[] itemArr = { new CheckedL ...
- MySQL——基础操作
参考博客:http://www.cnblogs.com/wupeiqi/articles/5713315.html 1.创建用户.授权(默认root,密码为空) 创建: create user 'al ...
- 后台web端的react
在api.js里,存放着各种功能引用的方法,比如这个fakeRegister,里面传参数params,返回要要调回的地址,${HOST1}/user/register requset会返回codeme ...
- 21JDBC_事务&JDBCTemplate
一.JDBC_事务 通过JDBC来操作银行转账的事务 1.API介绍 Connection接口中与事务有关的方法 void setAutoCommit(boolean autoCommit) ...