题意:对于k = 0 ... n求

解:

首先把i变成从0开始

我们发现a和b的次数(下标)是成正比例的,这不可,于是反转就行了。

反转b的话,会发现次数和是n + k,这不可。

反转a就很吼了。

这个东西恰好是卷积出来的第n - k项的系数。

所以我们把a串反转,然后用a与b卷积,最后再反转输出即可。

 /**************************************************************
Problem: 2194
Language: C++
Result: Accepted
Time:133643896 ms
Memory:14342474884 kb
****************************************************************/ #include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring> const int N = ;
const double pi = 3.1415926535897932384626; struct cp {
double x, y;
cp(double X = , double Y = ) {
x = X;
y = Y;
}
inline cp operator +(const cp &w) const {
return cp(x + w.x, y + w.y);
}
inline cp operator -(const cp &w) const {
return cp(x - w.x, y - w.y);
}
inline cp operator *(const cp &w) const {
return cp(x * w.x - y * w.y, x * w.y + y * w.x);
}
}a[N << ], b[N << ]; int r[N << ]; inline void FFT(int n, cp *a, int f) {
for(int i = ; i < n; i++) {
if(i < r[i]) {
std::swap(a[i], a[r[i]]);
}
} for(int len = ; len < n; len <<= ) {
cp Wn(cos(pi / len), f * sin(pi / len));
for(int i = ; i < n; i += (len << )) {
cp w(, );
for(int j = ; j < len; j++) {
cp t = a[i + len + j] * w;
a[i + len + j] = a[i + j] - t;
a[i + j] = a[i + j] + t;
w = w * Wn;
}
}
} if(f == -) {
for(int i = ; i <= n; i++) {
a[i].x /= n;
}
}
return;
} int main() {
int n;
scanf("%d", &n);
n--;
for(int i = ; i <= n; i++) {
scanf("%lf%lf", &a[n - i].x, &b[i].x);
} int len = , lm = ;
while(len <= (n << )) {
len <<= ;
lm++;
}
for(int i = ; i <= len; i++) {
r[i] = (r[i >> ] >> ) | ((i & ) << (lm - ));
} FFT(len, a, );
FFT(len, b, );
for(int i = ; i <= len; i++) {
a[i] = a[i] * b[i];
}
FFT(len, a, -); for(int i = ; i <= n; i++) {
printf("%d\n", (int)(a[n - i].x + 0.5));
} return ;
}

AC代码

bzoj2194 快速傅里叶之二的更多相关文章

  1. 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT

    2179: FFT快速傅立叶 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2978  Solved: 1523[Submit][Status][Di ...

  2. 【BZOJ】【2194】快速傅里叶之二

    FFT c[k]=sigma a[i]*b[i-k] 这个形式不好搞…… 而我们熟悉的卷积的形式是这样的 c[k]=sigma a[i]*b[k-i]也就是[下标之和是定值] 所以我们将a数组反转一下 ...

  3. BZOJ 2194 快速傅里叶之二

    fft. #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> ...

  4. bzoj2194 快速傅立叶之二 ntt

    bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...

  5. 【BZOJ2194】快速傅立叶之二

    [BZOJ2194]快速傅立叶之二 Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. ...

  6. [bzoj2194]快速傅立叶之二_FFT

    快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...

  7. BZOJ2194:快速傅立叶之二(FFT)

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

  8. bzoj2194: 快速傅立叶之二

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  9. 2018.11.18 bzoj2194: 快速傅立叶之二(fft)

    传送门 模板题. 将bbb序列反过来然后上fftfftfft搞定. 代码: #include<bits/stdc++.h> #define ri register int using na ...

随机推荐

  1. 前K个高频元素

    给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输入: nums = [1], ...

  2. 给定一个数组,求如果排序之后,相邻两数的最大差值,要求时间复杂度为O(N),且要求不能用非基于比较的排序

    题目: 给定一个数组,求如果排序之后,相邻两数的最大差值,要求时间复杂度为O(N),且要求不能用非基于比较的排序 public static int maxGap(int nums[]) { if ( ...

  3. ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock' (2)

    今天服务器遇到了一个很熟悉的问题, 输入 #mysql -u root -p   ERROR 2002 (HY000):Can't connect to local MySQL server     ...

  4. 关于对ProgressBar定义模板的一些总结

    在之前的博客中曾经写到了一篇关于如何定义圆形进度条的文章,今天就ProgressBar再来进行一些总结,首先来介绍一下ProgressBar的结构,ProgressBar控件的模板有两个部分,我们在定 ...

  5. 莫烦theano学习自修第四天【激励函数】

    1. 定义 激励函数通常用于隐藏层,是将特征值进行过滤或者激活的算法 2.常见的激励函数 1. sigmoid (1)sigmoid() (2)ultra_fast_sigmoid() (3)hard ...

  6. python设计模式第二十天【迭代器模式】

    1.不使用迭代器出现的问题 (1)容器承担了太多的功能,一方面提供添加和删除等功能,还需提供遍历访问功能 (2)在容器访问遍历过程中,需要保存遍历状态,当和元素的添加和删除混杂在一起时,容易引起混乱 ...

  7. 二、K8S镜像问题

    根据前面错误信息来看我们需要下载的镜像.就当前来说,用户 mirrorgooglecontainers 在 docker hub 同步了所有 k8s 最新的镜像,先从这儿下载,然后修改 tag 即可. ...

  8. freemarker -include

    在ftl中使用<#include >时 ,页面被强制显示 需要在struts.xml增加跳转type ,或则可以加同一<result-types></result-typ ...

  9. Winform实现多线程异步更新UI(进度及状态信息)

    引言 在进行Winform程序开发需要进行大量的数据的读写操作的时候,往往会需要一定的时间,然在这个时间段里面,界面ui得不到更新,导致在用户看来界面处于假死的状态,造成了不好的用户体验.所以在大量数 ...

  10. 比特币中的Base58 编码

    base58和base64一样是一种二进制转可视字符串的算法,主要用来转换大整数值.区别是,转换出来的字符串,去除了几个看起来会产生歧义的字符,如 0 (零), O (大写字母O), I (大写的字母 ...