python操作txt文件中数据教程[2]-python提取txt文件中的行列元素

觉得有用的话,欢迎一起讨论相互学习~Follow Me

  • 原始txt文件

  • 程序实现后结果-将txt中元素提取并保存在csv中



程序实现

import csv

filename = "./test/test.txt"
Sum_log_file = "./test/sumlog_test.csv"
Individual_log_file = "./test/Individual_test.csv"
DNA_log = [] # 精英种群个体日志mod9=1-8
Sum_log = [] # 精英种群总体日志mod9=0
DNA_Group = 7 # 表示每7条DNA组成一个组
# NO+'Sum 45.0 0.0 436.0 364.0 20.0\n'中属性一共6个属性,,则设为8列的二维数组
sum_evaindex = [[] for i in range(6)]
# 个体有8个属性,则设为8列的二维数组
Individual_evaindex = [[] for i in range(8)] # 将txt中文件信息保存到Sum_log和DNA_log列表中
with open(filename, 'r') as f:
i = 1
for line in f.readlines():
if i%9 == 0:
Sum_log.append(line)
else:
DNA_log.append(line)
i = i + 1
f.close()
# print(Sum_log)
# print(DNA_log) # ['Sum 45.0 0.0 436.0 364.0 20.0\n', 'Sum 27.0 3.0 398.0 394.0 25.0\n', 'Sum 45.0 0.0 384.0 394.0 30.0']
# ['1\n', 'AAACAAGGAACAAACGCACA 18.0 0.0 58.0 50.0 52.5552 10.0\n', 'AAAGGACACAGTGAGAGACG 9.0 0.0 60.0 52.0 48.662 0.0\n',
# 'AGCCATTGTCGAGTCCGTTA 0.0 0.0 63.0 50.0 48.4427 0.0\n', 'GTGGTCACTCCTCGCAAATT 9.0 0.0 64.0 56.0 48.9881 0.0\n',
# 'TTCAACCATACAGGCCTCGT 0.0 0.0 63.0 53.0 48.9355 0.0\n', 'CAAATGTGAGGATTCGGACG 9.0 0.0 63.0 53.0 50.8708 0.0\n',
# 'CCGTGGTGAACTGGAGCGTT 0.0 0.0 65.0 50.0 44.924 10.0\n', '2\n', 'AAAGGACACAGTGAGAGACG 9.0 0.0 53.0 58.0 48.662 0.0\n',
# 'AGCCATTGTCGAGTCCGTTA 0.0 0.0 60.0 57.0 48.4427 0.0\n', 'CCACAACGCTCGAAGGCAAG 0.0 0.0 59.0 54.0 44.7269 10.0\n',
# 'AAGTACAGCGGGCCAATAGC 9.0 0.0 56.0 58.0 47.2114 5.0\n', 'CAAATGTGAGGATTCGGACG 9.0 0.0 59.0 53.0 50.8708 0.0\n',
# 'GAGAACGTTGAGTGAGCGTG 0.0 0.0 60.0 57.0 46.9033 5.0\n', 'GATGTTAAGTAGAGCAGAGG 0.0 3.0 51.0 57.0 52.383 5.0\n', '3\n',
# 'AAACAAGGAACAAACGCACA 18.0 0.0 45.0 57.0 52.5552 10.0\n', 'AAAGGACACAGTGAGAGACG 9.0 0.0 52.0 59.0 48.662 0.0\n',
# 'CCACAACGCTCGAAGGCAAG 0.0 0.0 52.0 60.0 44.7269 10.0\n', 'AAGTACAGCGGGCCAAGATC 9.0 0.0 54.0 56.0 46.8607 5.0\n',
# 'CTCAGAAGATCTCGATGGCT 0.0 0.0 63.0 53.0 47.5395 0.0\n', 'AGCCATTGTCGAGTCCGTTA 0.0 0.0 63.0 52.0 48.4427 0.0\n',
# 'TGCCGCAAACTACACACACG 9.0 0.0 55.0 57.0 47.45 5.0\n'] # 遍历行,并将列属性保存到对应列中
Sum_no = 1
for Sum in Sum_log:
# print(Sum.split("\n")[0].split(" ")[1:])
# ['45.0', '0.0', '436.0', '364.0', '20.0']
# ['27.0', '3.0', '398.0', '394.0', '25.0']
# ['45.0', '0.0', '384.0', '394.0', '30.0']
sum_eva_index = Sum.split("\n")[0].split(" ")[1:]
sum_evaindex[0].append(int(Sum_no))
sum_evaindex[1].append(float(sum_eva_index[0])) # Con
sum_evaindex[2].append(float(sum_eva_index[1])) # HP
sum_evaindex[3].append(float(sum_eva_index[2])) # Hm
sum_evaindex[4].append(float(sum_eva_index[3])) # Si
sum_evaindex[5].append(float(sum_eva_index[4])) # GC
Sum_no = Sum_no + 1
# print(sum_evaindex[0]) # [45.0, 27.0, 45.0] # 遍历个体信息,并将其保存到Individual_evaindex列表中
dna_log_no = 0
for dna_log in DNA_log:
if (dna_log_no + 1)%8 == 1:
# print(int(dna_log.split("\n")[0]))
# 以列存储序号值,并且重复DNA_Group次
for i in range(DNA_Group):
Individual_evaindex[0].append(int(dna_log.split("\n")[0]))
else:
Individual_evaindex[1].append(dna_log.split("\n")[0].split(" ")[0]) # 所有DNA序列全部记载,使用原有的str字符串类型记载
Individual_evaindex[2].append(float(dna_log.split("\n")[0].split(" ")[1])) # DNA序列的连续值Con,注意要转换为浮点数类型
Individual_evaindex[3].append(float(dna_log.split("\n")[0].split(" ")[2])) # Hp茎区匹配
Individual_evaindex[4].append(float(dna_log.split("\n")[0].split(" ")[3])) # H-measure
Individual_evaindex[5].append(float(dna_log.split("\n")[0].split(" ")[4])) # Similarity
Individual_evaindex[6].append(float(dna_log.split("\n")[0].split(" ")[5])) # TM
Individual_evaindex[7].append(float(dna_log.split("\n")[0].split(" ")[6])) # GC dna_log_no = dna_log_no + 1
# print(Individual_evaindex[0]) #[1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3]
# print(Individual_evaindex[1])
# print(Individual_evaindex[2])
# print(Individual_evaindex[3])
# print(Individual_evaindex[4])
# print(Individual_evaindex[5])
# print(Individual_evaindex[6])
# print(Individual_evaindex[7])
# ['AAACAAGGAACAAACGCACA', 'AAAGGACACAGTGAGAGACG', 'AGCCATTGTCGAGTCCGTTA', 'GTGGTCACTCCTCGCAAATT', 'TTCAACCATACAGGCCTCGT',
# 'CAAATGTGAGGATTCGGACG', 'CCGTGGTGAACTGGAGCGTT', 'AAAGGACACAGTGAGAGACG', 'AGCCATTGTCGAGTCCGTTA', 'CCACAACGCTCGAAGGCAAG',
# 'AAGTACAGCGGGCCAATAGC', 'CAAATGTGAGGATTCGGACG', 'GAGAACGTTGAGTGAGCGTG', 'GATGTTAAGTAGAGCAGAGG', 'AAACAAGGAACAAACGCACA',
# 'AAAGGACACAGTGAGAGACG', 'CCACAACGCTCGAAGGCAAG', 'AAGTACAGCGGGCCAAGATC', 'CTCAGAAGATCTCGATGGCT', 'AGCCATTGTCGAGTCCGTTA',
# 'TGCCGCAAACTACACACACG']
# [18.0, 9.0, 0.0, 9.0, 0.0, 9.0, 0.0, 9.0, 0.0, 0.0, 9.0, 9.0, 0.0, 0.0, 18.0, 9.0, 0.0, 9.0, 0.0, 0.0, 9.0]
# [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
# [58.0, 60.0, 63.0, 64.0, 63.0, 63.0, 65.0, 53.0, 60.0, 59.0, 56.0, 59.0, 60.0, 51.0, 45.0, 52.0, 52.0, 54.0, 63.0, 63.0,
# 55.0]
# [50.0, 52.0, 50.0, 56.0, 53.0, 53.0, 50.0, 58.0, 57.0, 54.0, 58.0, 53.0, 57.0, 57.0, 57.0, 59.0, 60.0, 56.0, 53.0, 52.0,
# 57.0]
# [52.5552, 48.662, 48.4427, 48.9881, 48.9355, 50.8708, 44.924, 48.662, 48.4427, 44.7269, 47.2114, 50.8708, 46.9033,
# 52.383, 52.5552, 48.662, 44.7269, 46.8607, 47.5395, 48.4427, 47.45]
# [10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 10.0, 5.0, 0.0, 5.0, 5.0, 10.0, 0.0, 10.0, 5.0, 0.0, 0.0, 5.0] Sum_log_file_header = ["No", "Continuity", "Hairpin", "H-measure", "Similarity", "GC"]
# 将数据写入csv日志文件中
with open(Sum_log_file, "w", newline='') as f:
writer = csv.writer(f)
writer.writerow(Sum_log_file_header) # 注意,此处使用writerow而不是使用writerows
for i in range(sum_evaindex[0][-1]): # i 取(0,1,2)
writer.writerow(
[sum_evaindex[0][i], sum_evaindex[1][i], sum_evaindex[2][i], sum_evaindex[3][i], sum_evaindex[4][i],
sum_evaindex[5][i]])
f.close()
Individual_log_file_header = ["No", "DNAstructure", "Continuity", "Hairpin", "H-measure", "Similarity", "TM", "GC"]
with open(Individual_log_file, "w", newline='') as f:
writer = csv.writer(f)
writer.writerow(Individual_log_file_header) # 注意,此处使用writerow而不是使用writerows
for i in range(sum_evaindex[0][-1]*DNA_Group):
writer.writerow(
[Individual_evaindex[0][i], Individual_evaindex[1][i], Individual_evaindex[2][i], Individual_evaindex[3][i],
Individual_evaindex[4][i], Individual_evaindex[5][i], Individual_evaindex[6][i],
Individual_evaindex[7][i]])
f.close()

测试版本

filename = "./test.txt"
DNA_log = [] # 精英种群个体日志mod9=2-8
Sum_log = [] # 精英种群总体日志mod9=0
Num_log = [] # 序号日志mod9=1
Num_int = [] # 截取序号为int类型
sum_evaindex = [[] for i in range(5)]
Individual_evaindex = [[] for i in range(8)]
with open(filename, 'r') as f:
i = 1
for line in f.readlines():
if i%9 == 1:
Num_log.append(line)
elif i%9 == 0:
Sum_log.append(line)
else:
DNA_log.append(line)
i = i + 1
f.close()
print(Num_log)
print(Num_log[1]) # 其中存着的不是数字1,而是字符串'2\n',所以会有空行的情况
# ['1\n', '2\n', '3\n']
# 2
#
#
print(Sum_log)
print(DNA_log) # ['Sum 45.0 0.0 436.0 364.0 20.0\n', 'Sum 27.0 3.0 398.0 394.0 25.0\n', 'Sum 45.0 0.0 384.0 394.0 30.0']
# ['AAACAAGGAACAAACGCACA 18.0 0.0 58.0 50.0 52.5552 10.0\n', 'AAAGGACACAGTGAGAGACG 9.0 0.0 60.0 52.0 48.662 0.0\n',
# 'AGCCATTGTCGAGTCCGTTA 0.0 0.0 63.0 50.0 48.4427 0.0\n', 'GTGGTCACTCCTCGCAAATT 9.0 0.0 64.0 56.0 48.9881 0.0\n',
# 'TTCAACCATACAGGCCTCGT 0.0 0.0 63.0 53.0 48.9355 0.0\n', 'CAAATGTGAGGATTCGGACG 9.0 0.0 63.0 53.0 50.8708 0.0\n',
# 'CCGTGGTGAACTGGAGCGTT 0.0 0.0 65.0 50.0 44.924 10.0\n', 'AAAGGACACAGTGAGAGACG 9.0 0.0 53.0 58.0 48.662 0.0\n',
# 'AGCCATTGTCGAGTCCGTTA 0.0 0.0 60.0 57.0 48.4427 0.0\n', 'CCACAACGCTCGAAGGCAAG 0.0 0.0 59.0 54.0 44.7269 10.0\n',
# 'AAGTACAGCGGGCCAATAGC 9.0 0.0 56.0 58.0 47.2114 5.0\n', 'CAAATGTGAGGATTCGGACG 9.0 0.0 59.0 53.0 50.8708 0.0\n',
# 'GAGAACGTTGAGTGAGCGTG 0.0 0.0 60.0 57.0 46.9033 5.0\n', 'GATGTTAAGTAGAGCAGAGG 0.0 3.0 51.0 57.0 52.383 5.0\n',
# 'AAACAAGGAACAAACGCACA 18.0 0.0 45.0 57.0 52.5552 10.0\n', 'AAAGGACACAGTGAGAGACG 9.0 0.0 52.0 59.0 48.662 0.0\n',
# 'CCACAACGCTCGAAGGCAAG 0.0 0.0 52.0 60.0 44.7269 10.0\n', 'AAGTACAGCGGGCCAAGATC 9.0 0.0 54.0 56.0 46.8607 5.0\n',
# 'CTCAGAAGATCTCGATGGCT 0.0 0.0 63.0 53.0 47.5395 0.0\n', 'AGCCATTGTCGAGTCCGTTA 0.0 0.0 63.0 52.0 48.4427 0.0\n',
# 'TGCCGCAAACTACACACACG 9.0 0.0 55.0 57.0 47.45 5.0\n']
for no in Num_log:
# print(no[0]) # 字符形式的数字1,这是错的,因为有可能序号超过一位数
# Num_int.append(int(no.split("\n"))) ['1', '']
Num_int.append(int(no.split("\n")[0]))
for Sum in Sum_log:
# print(Sum.split("\n")[0].split(" ")[1:])
# ['45.0', '0.0', '436.0', '364.0', '20.0']
# ['27.0', '3.0', '398.0', '394.0', '25.0']
# ['45.0', '0.0', '384.0', '394.0', '30.0']
sum_eva_index = Sum.split("\n")[0].split(" ")[1:]
sum_evaindex[0].append(float(sum_eva_index[0]))
sum_evaindex[1].append(float(sum_eva_index[1]))
sum_evaindex[2].append(float(sum_eva_index[2]))
sum_evaindex[3].append(float(sum_eva_index[3]))
sum_evaindex[4].append(float(sum_eva_index[4]))
print(sum_evaindex[0]) # [45.0, 27.0, 45.0]

python操作txt文件中数据教程[2]-python提取txt文件的更多相关文章

  1. python操作txt文件中数据教程[4]-python去掉txt文件行尾换行

    python操作txt文件中数据教程[4]-python去掉txt文件行尾换行 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文章 python操作txt文件中数据教程[1]-使用pyt ...

  2. python操作txt文件中数据教程[3]-python读取文件夹中所有txt文件并将数据转为csv文件

    python操作txt文件中数据教程[3]-python读取文件夹中所有txt文件并将数据转为csv文件 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 python操作txt文件中 ...

  3. python操作txt文件中数据教程[1]-使用python读写txt文件

    python操作txt文件中数据教程[1]-使用python读写txt文件 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原始txt文件 程序实现后结果 程序实现 filename = '. ...

  4. 浅谈Python在信息学竞赛中的运用及Python的基本用法

    浅谈Python在信息学竞赛中的运用及Python的基本用法 前言 众所周知,Python是一种非常实用的语言.但是由于其运算时的低效和解释型编译,在信息学竞赛中并不用于完成算法程序.但正如LRJ在& ...

  5. java代码将excel文件中的内容列表转换成JS文件输出

    思路分析 我们想要把excel文件中的内容转为其他形式的文件输出,肯定需要分两步走: 1.把excel文件中的内容读出来: 2.将内容写到新的文件中. 举例 一张excel表中有一个表格: 我们需要将 ...

  6. XML序列化 判断是否是手机 字符操作普通帮助类 验证数据帮助类 IO帮助类 c# Lambda操作类封装 C# -- 使用反射(Reflect)获取dll文件中的类型并调用方法 C# -- 文件的压缩与解压(GZipStream)

    XML序列化   #region 序列化 /// <summary> /// XML序列化 /// </summary> /// <param name="ob ...

  7. python操作s3服务中的文件

    亚马逊云aws提供了s3服务.国内一些云厂商也用了s3技术.要操作s3服务器中的文件需要用到boto这个python包.下面的代码是一个简单例子. #! /usr/bin/python # -*-co ...

  8. Python 读写文件中数据

    1 需求 在文件 h264.txt 中的数据如图1,读入该文件中的数据,然后将第1列的地址删除,然后将数据输出到h264_out.txt中: 图1 h264.txt 数据截图             ...

  9. NPOI 操作数据库中数据的导入导出(Excel.xls文件) 和null数据的处理。

    App.config: <?xml version="1.0" encoding="utf-8" ?> <configuration> ...

随机推荐

  1. PowerBI开发 第十一篇:报表设计技巧(更新)

    PowerBI版本在持续的更新,这使得报表设计能够实现更多新的功能,您可以访问 PowerBI Blog查看PowerBI的最新更新信息,本文总结了PowerBI新版本的重要更新和设计技巧. 我的Po ...

  2. 算法练习-002-返回一个set数组

    题目描述: 写一个函数,它的作用是接受一个整数(假设为num),返回一个数组,数组的长度为num, 数组中的内容为随机的0至(num-1)的值,并且不能重复.比如num为5的话,数组可能是[1,0,3 ...

  3. [DEBUG]椭圆的中点Bresenham算法边缘绘制出现错误

    在使用椭圆的中点Bresenham算法绘制椭圆时, 当椭圆足够大时, 椭圆的边缘会出现下面这种情况. 出错原因: 将a, b声明为了int类型, 导致中点判别式中发生溢出 关注后面的a*b*a*b当a ...

  4. 使用kubeadm安装kubernetes高可用集群

    kubeadm安装kubernetes高可用集群搭建  第一步:首先搭建etcd集群 yum install -y etcd 配置文件 /etc/etcd/etcd.confETCD_NAME=inf ...

  5. kudu 存储引擎简析

    本文由  网易云发布. 1 概述 本文主要介绍kudu底层存储引擎的数据组织方式,先看整体结构如下: 一张表会分成若干个tablet , 每个tablet 包括MetaData 元信息及若干个RowS ...

  6. unity上传app store遇到的一些问题

    记录ios发布时遇到的一些问题 注:如果你是用mac开发,那就在Unity里直接BuildAndRun就直接可以导到XCode里,如果是win,那就先打包成ios包,在传导Xcode里打开,不过可能会 ...

  7. maven util 类 添加 service

    直接关键代码: public class DictionaryUtil { // 以下的处理,是为了在工具类中自动注入service // 前提是在applicationContext.xml中,将该 ...

  8. Linux内核分析(第二周)

    操作系统是如何工作的? 一.总结:三大法宝 1.存储程序计算机 + 函数调用堆栈 + 中断机制 2.堆栈:C语言程序运行时候必须的一个记录调用路径和参数的空间(函数调用框架/提供局部变量/传递参数/保 ...

  9. 对MP4一些概念的理解

    首先,对视频一些基本概念的理解: I帧:i帧又称为内编码帧,是一种自带全部信息的独立帧,可独立解码,可理解为一张静态图片,视频序列中的第一个帧始终是i帧,因为它是关键帧. P帧:P帧又称为帧间预测编码 ...

  10. Python之路3【知识点】白话Python编码和文件操作(截载)

    无意发现这篇文章讲的比较好,存下来供参考: http://www.cnblogs.com/luotianshuai/p/5735051.html