朴素贝叶斯算法--python实现
朴素贝叶斯算法要理解一下基础: 【朴素:特征条件独立 贝叶斯:基于贝叶斯定理】
# 极大似然估计 朴素贝叶斯算法
#coding:utf-8
# 极大似然估计 朴素贝叶斯算法
import pandas as pd
import numpy as np class NaiveBayes(object):
def getTrainSet(self):
dataSet = pd.read_csv('C://pythonwork//practice_data//naivebayes_data.csv')
dataSetNP = np.array(dataSet) #将数据由dataframe类型转换为数组类型
trainData = dataSetNP[:,0:dataSetNP.shape[1]-1] #训练数据x1,x2
labels = dataSetNP[:,dataSetNP.shape[1]-1] #训练数据所对应的所属类型Y
return trainData, labels def classify(self, trainData, labels, features):
#求labels中每个label的先验概率
labels = list(labels) #转换为list类型
P_y = {} #存入label的概率
for label in labels:
P_y[label] = labels.count(label)/float(len(labels)) # p = count(y) / count(Y) #求label与feature同时发生的概率
P_xy = {}
for y in P_y.keys():
y_index = [i for i, label in enumerate(labels) if label == y] # labels中出现y值的所有数值的下标索引
for j in range(len(features)): # features[0] 在trainData[:,0]中出现的值的所有下标索引
x_index = [i for i, feature in enumerate(trainData[:,j]) if feature == features[j]]
xy_count = len(set(x_index) & set(y_index)) # set(x_index)&set(y_index)列出两个表相同的元素
pkey = str(features[j]) + '*' + str(y)
P_xy[pkey] = xy_count / float(len(labels)) #求条件概率
P = {}
for y in P_y.keys():
for x in features:
pkey = str(x) + '|' + str(y)
P[pkey] = P_xy[str(x)+'*'+str(y)] / float(P_y[y]) #P[X1/Y] = P[X1Y]/P[Y] #求[2,'S']所属类别
F = {} #[2,'S']属于各个类别的概率
for y in P_y:
F[y] = P_y[y]
for x in features:
F[y] = F[y]*P[str(x)+'|'+str(y)] #P[y/X] = P[X/y]*P[y]/P[X],分母相等,比较分子即可,所以有F=P[X/y]*P[y]=P[x1/Y]*P[x2/Y]*P[y] features_label = max(F, key=F.get) #概率最大值对应的类别
return features_label if __name__ == '__main__':
nb = NaiveBayes()
# 训练数据
trainData, labels = nb.getTrainSet()
# x1,x2
features = [2,'S']
# 该特征应属于哪一类
result = nb.classify(trainData, labels, features)
print features,'属于',result
#朴素贝叶斯算法 贝叶斯估计, λ=1 K=2, S=3; λ=1 拉普拉斯平滑
#coding:utf-8
#朴素贝叶斯算法 贝叶斯估计, λ=1 K=2, S=3; λ=1 拉普拉斯平滑
import pandas as pd
import numpy as np class NavieBayesB(object):
def __init__(self):
self.A = 1 # 即λ=1
self.K = 2
self.S = 3 def getTrainSet(self):
trainSet = pd.read_csv('C://pythonwork//practice_data//naivebayes_data.csv')
trainSetNP = np.array(trainSet) #由dataframe类型转换为数组类型
trainData = trainSetNP[:,0:trainSetNP.shape[1]-1] #训练数据x1,x2
labels = trainSetNP[:,trainSetNP.shape[1]-1] #训练数据所对应的所属类型Y
return trainData, labels def classify(self, trainData, labels, features):
labels = list(labels) #转换为list类型
#求先验概率
P_y = {}
for label in labels:
P_y[label] = (labels.count(label) + self.A) / float(len(labels) + self.K*self.A) #求条件概率
P = {}
for y in P_y.keys():
y_index = [i for i, label in enumerate(labels) if label == y] # y在labels中的所有下标
y_count = labels.count(y) # y在labels中出现的次数
for j in range(len(features)):
pkey = str(features[j]) + '|' + str(y)
x_index = [i for i, x in enumerate(trainData[:,j]) if x == features[j]] # x在trainData[:,j]中的所有下标
xy_count = len(set(x_index) & set(y_index)) #x y同时出现的次数
P[pkey] = (xy_count + self.A) / float(y_count + self.S*self.A) #条件概率 #features所属类
F = {}
for y in P_y.keys():
F[y] = P_y[y]
for x in features:
F[y] = F[y] * P[str(x)+'|'+str(y)] features_y = max(F, key=F.get) #概率最大值对应的类别
return features_y if __name__ == '__main__':
nb = NavieBayesB()
# 训练数据
trainData, labels = nb.getTrainSet()
# x1,x2
features = [2,'S']
# 该特征应属于哪一类
result = nb.classify(trainData, labels, features)
print features,'属于',result
朴素贝叶斯算法--python实现的更多相关文章
- 朴素贝叶斯算法python实现
朴素贝叶斯是一种十分简单的分类算法,称其朴素是因为其思想基础的简单性,就文本分类而言,他认为词袋中的两两词之间的关系是相互独立的,即一个对象的特征向量中的每个维度都是互相独立的.这是朴素贝叶斯理论的思 ...
- 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)
朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...
- 朴素贝叶斯算法的python实现方法
朴素贝叶斯算法的python实现方法 本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类 ...
- 朴素贝叶斯算法的python实现
朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么 ...
- 机器学习:python中如何使用朴素贝叶斯算法
这里再重复一下标题为什么是"使用"而不是"实现": 首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高. 其次,对于数学不好的人来说,为了实 ...
- Python机器学习笔记:朴素贝叶斯算法
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...
- Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...
- 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)
在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...
- 朴素贝叶斯算法下的情感分析——C#编程实现
这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Pr ...
随机推荐
- 挂载报错:“/dev/vda1 is apparently in use by the system;”
挂载报错:“/dev/vda1 is apparently in use by the system;” 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 距离回家倒计时还有一天,明天 ...
- JVM总结(一):概述--JVM运行时数据区
大三下,趁着寒假重温一遍JVM,准备在一个系列来总价一下学习JVM的整个过程.争取在接下来的一个星期内更新完这一个系列,然后回家过年. JVM运行时数据区 线程私有的数据区 程序计数器 虚拟机栈 本地 ...
- TCP和IP的三次握手和第四次挥手
TCP握手协议 在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接.第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确 ...
- bzoj千题计划283:bzoj4516: [Sdoi2016]生成魔咒(后缀数组)
http://www.lydsy.com/JudgeOnline/problem.php?id=4516 考虑在后面新加一个字母产生的影响 假设是第i个 如果不考虑重复,那么会增加i个不同的字符串 考 ...
- mysql复杂查询(一)
所谓复杂查询,指涉及多个表.具有嵌套等复杂结构的查询.这里简要介绍典型的几种复杂查询格式. 一.连接查询 连接是区别关系与非关系系统的最重要的标志.通过连接运算符可以实现多个表查询.连接查询主要包括内 ...
- CSS的力量:用一个DIV画图
这些图片都是用一个DIV绘制出来的,其实原理并不复杂. 这些图片都是由CSS绘制出来的,通过background-image叠加实现, 如蘑菇头的实现,通过 radial-gradient 径向渐变 ...
- HTML5 移动开发(CSS3设计移动页面样式)
1.如何创建CSS样式表 2.CSS3的卓越特性 3.基于设备属性改变样式的媒体查询 4.如何使用属性改变元标签创建更美观移动页面 层叠样式表是移动WEB开发中的一个重要组成部分,本次分享将学到如 ...
- 月薪20K软件测试自动化岗必问面试题:验证码识别与处理
本文乃Happy老师的得意门生来自java全栈自动化测试4期的小核桃所作.正所谓严师出高徒,笔下有黄金~~让我们一起来征服面试官吧~~ 在做自动化测试的时候,经常会遇到需要输入验证码的地方,有些可以让 ...
- string替换所有指定字符串(C++)
C++的string提供了replace方法来实现字符串的替换,但是对于将字符串中某个字符串全部替换这个功能,string并没有实现,我们今天来做的就是这件事. 首先明白一个概念,即string替换所 ...
- linux下查看各硬件型号
查看主板型号 # dmidecode |grep -A 8 "System Information"System Information 上网查DELL CS24-TY,找到说主板 ...