那么,我们开始吧,

堆是一个完全二叉树,而且是每层都有规律的二叉树

规律大概是:

小根堆:最上层数的大小最小,往下每层结点都比父亲结点大,比两个儿子结点小

大根堆:最上层数的大小最大,往下每层结点都比父亲结点小,比两个儿子结点大

题目思路:那么,对于这个题,我们将果子堆sort一下,然后把最小的果堆作为根节点,然后把所有果子堆一起,构成一个堆,每次我们只要取堆中最小的两个结点,把他们的和加到体力值消耗总值里面,把这两个结点去掉,然后把他们的和重新加入堆中再维护一下,重复这个过程直到堆中只剩下一个元素,然后输出体力值就ok了

复杂度(nlogn)

安利英语单词:insert 插入,delete 删除,layer(没用到,但是学习一下) 层数,heap 堆

AC代码上菜:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
int n,i0,a[],k,top1,top2,k2,insert,layer;//layer为层数,insert为插入的节点
ll sum=;
void put(int insert)//将结点插入堆中然后维护的一个函数
{
a[++k]=insert;//k为节点个数,入堆之后当然++
int k0=k;//k0为当前此结点的下标
while(k0>)//此节点不在堆头
{
if(a[k0/]>a[k0])swap(a[k0/],a[k0]);//如果父亲结点比他大,就交换(大根堆就把大于号改成小于号)
else break;//满足小根堆条件,退出
k0/=;//把它变成父亲结点(在不满足小根堆条件下)
}
}
void delete1(int i)//删除节点+维护操作
{
swap(a[i],a[k]);
k--;//长度-1,把交换后的原结点值删除
int now=,nxt,k0=k;
while(now*<=k0)
{
nxt=now*;
if(nxt<k0&&a[nxt+]<a[nxt])nxt++;
if(a[now]<=a[nxt])break;
else swap(a[now],a[nxt]);
now=nxt;
}
}
void heap()
{
while(k>)//还剩多于两堆水果
{
//思路:取出堆中两个最小的节点,然后合并,删除,并重新插入
top1=a[];insert=a[];delete1();
top2=a[];delete1(); insert+=top2;
sum+=insert;
put(insert);
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
sort(a+,a++n);//先排序
k=n;//获取结点个数
heap();
printf("%lld",sum);//输出结果
return ;
}

对大家有帮助吗QWQ

推荐一个呗。(小声说))

P1090 合并果子 题解的更多相关文章

  1. NOIP提高组2004 合并果子题解

    NOIP提高组2004 合并果子题解 描述:在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消 ...

  2. 堆排序 P1090 合并果子

    P1090 合并果子 本题要用到堆 一个小根堆 每次取出两堆,合并成一堆,为了让多多花费体力最少,我们要尽量少的重复大堆的合并,因此每次合并完以后,要把新的一坨放到堆里排一排,维护一个堆 有必要强调一 ...

  3. 【洛谷P1090 合并果子】

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  4. (贪心 优先队列)P1090合并果子 洛谷

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  5. 洛谷 P1090合并果子【贪心】【优先队列】

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  6. 洛谷P1090 合并果子

    合并果子 题目链接 这个只能用于结构体中 struct item { int val; friend bool operator < (item a,item b) { return a.val ...

  7. [NOIP2004] 提高组 洛谷P1090 合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  8. 洛谷P1090 合并果子【贪心】

    在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可以看出,所 ...

  9. 堆学习笔记(未完待续)(洛谷p1090合并果子)

    上次讲了堆,别人都说极其简单,我却没学过,今天又听dalao们讲图论,最短路又用堆优化,问懂了没,底下全说懂了,我???,感觉全世界都会了堆,就我不会,于是我决定补一补: ——————来自百度百科 所 ...

随机推荐

  1. 深入介绍Java中的锁[原理、锁优化、CAS、AQS]

    1.为什么要用锁? 锁-是为了解决并发操作引起的脏读.数据不一致的问题. 2.锁实现的基本原理 2.1.volatile Java编程语言允许线程访问共享变量, 为了确保共享变量能被准确和一致地更新, ...

  2. Identity Server 4 - Hybrid Flow - MVC客户端身份验证

    预备知识 可能需要看一点点预备知识 OAuth 2.0 不完全简介: https://www.cnblogs.com/cgzl/p/9221488.html OpenID Connect 不完全简介: ...

  3. .NET Core微服务之基于EasyNetQ使用RabbitMQ消息队列

    Tip: 此篇已加入.NET Core微服务基础系列文章索引 一.消息队列与RabbitMQ 1.1 消息队列 “消息”是在两台计算机间传送的数据单位.消息可以非常简单,例如只包含文本字符串:也可以更 ...

  4. 机器学习——决策树,DecisionTreeClassifier参数详解,决策树可视化查看树结构

    0.决策树 决策树是一种树型结构,其中每个内部节结点表示在一个属性上的测试,每一个分支代表一个测试输出,每个叶结点代表一种类别. 决策树学习是以实例为基础的归纳学习 决策树学习采用的是自顶向下的递归方 ...

  5. 学习ASP.NET Core Razor 编程系列十八——并发解决方案

    学习ASP.NET Core Razor 编程系列目录 学习ASP.NET Core Razor 编程系列一 学习ASP.NET Core Razor 编程系列二——添加一个实体 学习ASP.NET ...

  6. Node.js学习(第一章:Node.js简介)

    Node.js是什么? Node.js 诞生于 2009 年,由 Joyent 的员工 Ryan Dahl 开发而成, 目前官网最新版本已经更新到 12.0.0版本,最新稳定的是10.15.3.Nod ...

  7. Java——泛型

    前言 一般的类和方法,使用的都是具体的类型:基本类型或者自定义的类.如果我们要编写出适用于多种类型的通用代码,那么肯定就不能使用具体的类型.前面我们介绍过多态,多态算是一种泛化机制,但是也会拘泥于继承 ...

  8. docker(3)容器管理命令

    接着上一篇,今天说一下Docker 有关容器的常用命令.算是比较详细了吧. docker run  命令: 注:此命令作用是使用一个镜像运行启动一个容器. 在启动运行的时候 会检查docker 中是否 ...

  9. C#工具:MySQL忘记密码解决方法

    1.进入管理员控制台停止mysql服务:net stop mysql; 2.进入mysql的安装路径,如我的安装路径为C:\Program Files\MySQL\MySQL Server 5.5,打 ...

  10. 简述ADO中如何使用参数化的命令对象以及增删改查,存储过程的操作

    连接数据库代码: private SqlConnection con = null; public void OpenConnection(string connectionString) { con ...