题链:

https://www.luogu.org/problemnew/show/P2606
题解:

组合数(DP),Lucas定理

首先应该容易看出,这个排列其实是一个小顶堆。
然后我们可以考虑dp:
令F[i]为小顶堆的i号节点那棵子树的方案数:
F[i]=F[i*2]*F[i*2+1]*C(size[i]-1,size[i*2])
含义就是左儿子的方案数*右儿子的方案数*当前i节点取走最小的那个值后分size[i*2]个数给左儿子的方案数。

(BZOJ上数据加强,可能会N>P,所以如果直接预处理阶乘和阶乘逆元可能会导致出现很多不该出现的0,所以这里考虑用Lucas定理)

代码:

#include<bits/stdc++.h>
#define MAXN 1000006
using namespace std;
int N,P,ANS=1;
int size[MAXN],fac[MAXN],inv[MAXN];
int fastpow(int a,int b){
int ret=1;
if(a==0) return 1;
for(;b;a=1ll*a*a%P,b>>=1)
if(b&1) ret=1ll*ret*a%P;
return ret;
}
void prepare(int m){
fac[0]=inv[0]=1;
for(int i=1;i<=m;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[m]=fastpow(fac[m],P-2);
for(int i=m-1;i>=1;i--) inv[i]=1ll*inv[i+1]*(i+1)%P;
}
int C(int m,int n){
int ret=1,nn,mm;
while(m&&n){
mm=m%P; nn=n%P; m/=P; m/=P;
if(mm<nn) return 0;
ret=1ll*ret*fac[mm]%P*inv[nn]%P*inv[mm-nn]%P;
}
return ret;
}
int main(){
scanf("%d%d",&N,&P);
prepare(min(N,P-1));
for(int i=N;i>=1;i--) size[i]++,size[i/2]+=size[i];
for(int i=1;i<=N;i++) if(i*2<=N)
ANS=1ll*ANS*C(size[i]-1,size[i*2])%P;
printf("%d\n",ANS);
return 0;
}

  

●洛谷P2606 [ZJOI2010]排列计数的更多相关文章

  1. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  2. 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)

    题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...

  3. 洛谷P2606 [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  4. 洛谷P2606 [ZJOI2010]排列计数(数位dp)

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  5. 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

  6. P2606 [ZJOI2010]排列计数

    P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...

  7. BZOJ1833或洛谷2602 [ZJOI2010]数字计数

    BZOJ原题链接 洛谷原题链接 又是套记搜模板的时候.. 对\(0\sim 9\)单独统计. 定义\(f[pos][sum]\),即枚举到第\(pos\)位,前面枚举的所有位上是当前要统计的数的个数之 ...

  8. 洛谷 P2602 [ZJOI2010]数字计数

    洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...

  9. 洛谷P4071 [SDOI2016] 排列计数 [组合数学]

    题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

随机推荐

  1. 敏捷冲刺每日报告——Day4

    1.情况简述 Alpha阶段第一次Scrum Meeting 敏捷开发起止时间 2017.10.28 00:00 -- 2017.10.29 00:00 讨论时间地点 2017.10.28晚9:30, ...

  2. 配置SpringAop时需要用到的AspectJ表达式

    Aspectj切入点语法定义 在使用spring框架配置AOP的时候,不管是通过XML配置文件还是注解的方式都需要定义pointcut"切入点" 例如定义切入点表达式  execu ...

  3. DML数据操作语言之查询(一)

    1.select语句基础 基本语句格式:  select <列名>,.... from <表名>; select子句中列举出希望从表中查询出的列的名称,from子句则指定了选取 ...

  4. DenseNet

    特点: dense shortcut connections 结构: DenseNet 是一种具有密集连接的卷积神经网络.在该网络中,任何两层之间都有直接的连接,也就是说,网络每一层的输入都是前面所有 ...

  5. Linux基础常用命令

    Linux 下命令有很多,并且很多命令用法又有不同的选项,这里介绍一些常用的最基本的Linux命令的用法,希望给大家留下便利之处. 1.cd 切换目录.例如 cd /home 可切换到home目录,  ...

  6. 【原创】Webpack构建中hash的优化

    背景: SPA的vue应用,采用webpack2构建,打包入口为main.js 输出:main模块打包成app.js,公共lib打包成vendor.js,公共样式打包成app.css,运行时依赖打包成 ...

  7. 数据结构与算法 —— 链表linked list(02)

    我们继续来看链表的第二道题,来自于leetcode: 两数相加 给定两个非空链表来代表两个非负整数,位数按照逆序方式存储,它们的每个节点只存储单个数字.将这两数相加会返回一个新的链表. 你可以假设除了 ...

  8. EasyUI DataGrid 实现单行/多行编辑功能

    要实现 EasyUI DataGrid 的可编辑很简单,在需要编辑的列添加 editor [编辑器]就可以了. 单行编辑 // 初始化数据列表 function initDatagrid() { $( ...

  9. python网络爬虫与信息提取 学习笔记day1

    Day1: 安装python之后,为其配置requests第三方库,并爬取百度主页内容. 语句解释: r.status_code检测请求的状态码,如果状态码为200,则说明访问成功,否则,则说明访问失 ...

  10. bootstrap 一个简单的登陆页面

    效果如图:用bootstrap 写的一个简单的登陆 一.修改样式 样式可以自己调整,例如换个背景色之类的,修改 background-color属性就可以 #from { background-col ...