题目链接:【http://acm.hdu.edu.cn/showproblem.php?pid=6203】

题意  :给出一棵树,如果(a,b)路径上有坏点,那么(a,b)之间不联通,给出一些不联通的点对,然后判断最少有多少个坏点。

题解  :求每个点对的LCA,然后根据LCA的深度排序。从LCA最深的点对开始,如果a或者b点已经有点被标记了,那么continue,否者标记(a,b)LCA的子树每个顶点加1。

#include<Bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 5;
int N, Q;
int c[maxn], In[maxn], Out[maxn], cnt;
struct Edge
{
int id, next;
Edge(int id = 0, int next = 0): id(id), next(next) {}
} E[maxn << 1]; //双向边
int head[maxn], tot;
void initEdge()
{
memset(c, 0, sizeof(c));
cnt = 0;
for(int i = 0; i <= N; i++) head[i] = -1;
tot = 0;
}
void addEdge(int u, int v)
{
E[tot] = Edge(v, head[u]);
head[u] = tot++;
}
int siz[maxn], top[maxn], dep[maxn], fa[maxn];
int clk;//需要初始化
void DFS1(int u, int p)
{
In[u] = ++cnt;
dep[u] = dep[p] + 1;
fa[u] = p, siz[u] = 1;
for(int k = head[u]; k != -1; k = E[k].next)
{
int id = E[k].id;
if(id == p) continue;
DFS1(id, u);
siz[u] += siz[id];
}
Out[u] = cnt;
}
void DFS2(int u, int p)
{
int son = -1;
for(int k = head[u]; k != -1; k = E[k].next)//找重儿子
{
int id = E[k].id;
if(id == p)continue;
if(son == -1 || siz[id] > siz[son]) son = id;
}
if(son != -1)
{
top[son] = top[u];
DFS2(son, u);
}
for(int k = head[u]; k != -1; k = E[k].next)
{
int id = E[k].id;
if(id == p || id == son)continue;
top[id] = id;
DFS2(id, u);
}
}
int LCA(int x, int y)
{
while(top[x] != top[y])
{
if(dep[top[x]] < dep[top[y]]) swap(x, y);
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x, y);
return x;
} struct node
{
int u, v, lca;
bool operator < (const node &T) const
{
return dep[lca] > dep[T.lca];
}
} qry[50050];
int low_Bit(int x)
{
return x & -x;
}
void update(int x, int val)
{
while(x <= N)
{
c[x] += val;
x += low_Bit(x);
}
}
int get_sum(int x)
{
int ret = 0;
while(x > 0)
{
ret += c[x];
x -= low_Bit(x);
}
return ret;
}
int main()
{
while(~scanf("%d", &N))
{
N++;
initEdge();
for(int i = 1; i <= N - 1; i++)
{
int u, v;
scanf("%d %d", &u, &v);
u++, v++;
addEdge(u, v), addEdge(v, u);
}
DFS1(1, 0),top[1] = 1,DFS2(1, 0);
scanf("%d", &Q);
for(int i = 1; i <= Q; i++)
{
scanf("%d %d", &qry[i].u, &qry[i].v);
qry[i].u++, qry[i].v++;
qry[i].lca = LCA(qry[i].u, qry[i].v);
}
sort(qry + 1, qry + 1 + Q);
int ans = 0;
for(int i = 1; i <= Q; i++)
{
int u = qry[i].lca;
int ret = get_sum(In[qry[i].u]) + get_sum(In[qry[i].v]);
if(ret) continue;
ans++;
update(In[u], 1);
update(Out[u] + 1, -1);
}
printf("%d\n", ans);
}
return 0;
}

  

HDU 6203 ping ping ping [LCA,贪心,DFS序,BIT(树状数组)]的更多相关文章

  1. BZOJ 2819: Nim dfs序维护树状数组,倍增

    1.随机选两个堆v,u,询问若在v到u间的路径上的石子堆中玩Nim游戏,是否有必胜策略,如果有,vfleaking将会考虑将这些石子堆作为初始局面之一,用来坑玩家.2.把堆v中的石子数变为k. 分析: ...

  2. 【Tyvj2133&BZOJ1146】网络管理Network(树套树,DFS序,树状数组,主席树,树上差分)

    题意:有一棵N个点的树,每个点有一个点权a[i],要求在线实现以下操作: 1:将X号点的点权修改为Y 2:查询X到Y的路径上第K大的点权 n,q<=80000 a[i]<=10^8 思路: ...

  3. 【BZOJ1103】大都市meg(DFS序,树状数组)

    题意:有一颗树,1号点为根,保证编号小的点深度较小,初始状态每条边都没有被标记,要求实现两个操作在线: A:将连接x,y的边标记 W:查询从1到x的路径上有多少条边未被标记 n<=2*10^5 ...

  4. BZOJ 1103: [POI2007]大都市meg(dfs序,树状数组)

    本来还想链剖的,结果才发现能直接树状数组的= = 记录遍历到达点与退出点的时间,然后一开始每个到达时间+1,退出时间-1,置为公路就-1,+1,询问直接点1到该点到达时间求和就行了- - CODE: ...

  5. 2018.06.30 BZOJ4765: 普通计算姬(dfs序+分块+树状数组)

    4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MB Description "奋战三星期,造台计算机".小G响应号召,花了三小时 ...

  6. 【POJ3321】Apple Tree(DFS序,树状数组)

    题意:给一棵n个节点的树,每个节点开始有一个苹果,m次操作 1.将某个结点的苹果数异或 1 2.查询一棵子树内的苹果数 n,m<=100000   思路:最近一段时间在思考树上统计问题的算法 发 ...

  7. BZOJ 4765 普通计算姬 dfs序+分块+树状数组+好题!!!

    真是道好题...感到灵魂的升华... 按dfs序建树状数组,拿前缀和去求解散块: 按点的标号分块,分成一个个区间,记录区间子树和 的 总和... 具体地,需要记录每个点u修改后,对每一个块i的贡献,记 ...

  8. HDOJ5877(dfs序+离散化+树状数组)

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  9. Apple Tree POJ - 3321 dfs序列构造树状数组(好题)

    There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. ...

  10. 【bzoj3252】攻略 贪心+DFS序+线段树

    题目描述 题目简述:树版[k取方格数] 众所周知,桂木桂马是攻略之神,开启攻略之神模式后,他可以同时攻略k部游戏. 今天他得到了一款新游戏<XX半岛>,这款游戏有n个场景(scene),某 ...

随机推荐

  1. 【BZOJ2683】简单题 [分治][树状数组]

    简单题 Time Limit: 50 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 你有一个N*N的棋盘,每个格子内有一 ...

  2. 2017ACM暑期多校联合训练 - Team 2 1003 HDU 6047 Maximum Sequence (线段树)

    题目链接 Problem Description Steph is extremely obsessed with "sequence problems" that are usu ...

  3. NYOJ 1022 合纵连横 (并查集)

    题目链接 描述 乱世天下,诸侯割据.每个诸侯王都有一片自己的领土.但是不是所有的诸侯王都是安分守己的,实力强大的诸侯国会设法吞并那些实力弱的,让自己的领土面积不断扩大.而实力弱的诸侯王为了不让自己的领 ...

  4. Mac 10.9x下安装配置phonegap3.0开发环境 (涉及android sdk配置)

    最近突然想弄一下phonegap,之前一直是听说,没亲自配置开发过.结果配置过程非常艰难啊.特别是android平台的配置,那叫一个麻烦,网上搜了半天都没找到非常好的资料.文章也都是抄来抄去,最烦的就 ...

  5. Lucene7.2.1系列(二)luke使用及索引文档的基本操作

    系列文章: Lucene系列(一)快速入门 Lucene系列(二)luke使用及索引文档的基本操作 Lucene系列(三)查询及高亮 luke入门 简介: github地址:https://githu ...

  6. ProxySQL 排错 Max connect timeout reached while reaching hostgroup 10 after 10000ms

    ProxySQL 排错 问题分析: 在ProxySQL在集群下,因未知原因导致误测到所有节点OFFLINE_HARD,并runtime_mysql_servers表清空,从而导致前端查询无法传递到后端 ...

  7. 很多人都没用过的轻量级Oracle数据库数据导出工具SQLLDR2——性能超赞

    SQLLDR2 介绍 每周发表一篇数据库或大数据相关的帖子,敬请关注 1. 工具介绍 Sqluldr2(SQL * UnLoader 第二版)是灵活与强大的 Oracle 文本导出程序,已被大众使 用 ...

  8. Ubuntu16.04安装记

    Ubuntu16.04安装记 基本信息: 华硕笔记本 Windows 10 家庭版 处理器:Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz 2.71GHz 已安装的内 ...

  9. c++环境配置 Eclipse+mingw-get-setup

    1,到官网下载eclipse  和  mingw-get-setup 2,先安装eclipse,然后等着... 3,再安装mingw-get-setup, 等待...安装完成后打开,选择basic s ...

  10. NTP详解-转

    网管实战:Linux时间服务器配置 [IT168 专稿]目前计算机网络中各主机和服务器等网络设备的时间基本处于无序的状态.随着计算机网络应用的不断涌现,计算机的时间同步问题成为愈来愈重要的事情.以Un ...