LINK


思路

首先是考虑怎么设计dp的状态

发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了

然后发现无论是什么时候一个状态到另一个状态的转移都是固定的方式

所以可以预处理转移矩阵用矩阵快速幂进行优化

但是如果在计算的时候暴力\(状态^3\)进行转移会TLE

但是注意到在这个时候有用的状态其实只有一个向量

所以就预处理倍增然后用向量乘矩阵来优化到单次\(logn状态^2\)就可以了

有点卡常


//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
//typename
typedef long long ll;
//convenient for
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
//inf of different typename
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
//fast read and write
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) x = (x<<1) + (x<<3) + c -'0', c = getchar();
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) putchar('-'), x = -x;
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 170;
const int Mod = 998244353;
ll n, m, K, cnt = 0;
int inv[10];
int id[9][9][9];
struct Matrix{
int t[N][N];
Matrix() { memset(t, 0, sizeof(t));}
}trans, g[61];
inline int add(int a, int b) { return ((a += b) > Mod) ? (a - Mod) : a; }
inline int mul(int a, int b) { return 1ll * a * b % Mod; }
Matrix operator * (const Matrix a, const Matrix b) {
Matrix c;
fu(k, 0, cnt)
fu(i, 0, cnt) if (a.t[i][k])
fu(j, 0, cnt)
c.t[i][j] = add(c.t[i][j], mul(a.t[i][k], b.t[k][j]));
return c;
}
inline Matrix mul_matrix(Matrix a, Matrix b) {
Matrix c;
fu(k, 0, cnt) if(a.t[0][k])
fu(j, 0, cnt)
c.t[0][j] = add(c.t[0][j], mul(a.t[0][k], b.t[k][j]));
return c;
}
inline int fast_pow(int a, int b) {
int ans = 1;
while (b) {
if (b & 1) ans = mul(ans, a);
b >>= 1;
a = mul(a, a);
}
return ans;
}
inline int get_add_id(int i, int j, int k) {
if (i + j + k == K) return id[i][j][k];
if (m == 1) return id[i + 1][j][k];
if (m == 2) return id[i][j + 1][k];
if (m == 3) return id[i][j][k + 1];
}
void init() {
fu(i, 1, K + 1)inv[i] = fast_pow(i, Mod - 2);
int upj, upk, ID, inv_sum;
fu(i, 0, K) {
upj = (m == 1)? 0 : K - i;
fu(j, 0, upj) {
upk = (m == 2)? 0 : K - i - j;
fu(k, 0, upk) id[i][j][k] = ++cnt;
}
}
++cnt;
trans.t[cnt][cnt] = 1;
fu(i, 0, K) {
upj = (m == 1)? 0 : K - i;
fu(j, 0, upj) {
upk = (m == 2)? 0 : K - i - j;
fu(k, 0, upk) {
ID = id[i][j][k], inv_sum = inv[i + j + k + 1];
if (i) trans.t[ID][id[i - 1][j][k]] = mul(inv_sum, i);
if (j) trans.t[ID][get_add_id(i + 1, j - 1, k)] = mul(inv_sum, j);
if (k) trans.t[ID][get_add_id(i, j + 1, k - 1)] = mul(inv_sum, k);
trans.t[ID][ID] = trans.t[ID][cnt] = inv_sum;
}
}
}
g[0] = trans;
fu(i, 1, 60) g[i] = g[i - 1] * g[i - 1];
}
int main() {
#ifdef dream_maker
freopen("input.txt","r",stdin);
#endif
int T;Read(T);
Read(m); Read(K);
init();
int pre = get_add_id(0, 0, 0);
while (T--) {
Read(n);
Matrix ans;
ans.t[0][pre] = 1;
fu(i, 0, 60)
if ((n >> i) & 1) ans = mul_matrix(ans, g[i]);
printf("%d\n", ans.t[0][cnt]);
}
return 0;
}

LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】的更多相关文章

  1. LOJ2325「清华集训 2017」小Y和恐怖的奴隶主

    题目链接 首先dp很显然,\(f(i,s)\)表示到了第i轮,各种血量人数的情况为s今后的期望攻击boss次数.那么有\(f(i,s)=\frac{1}{num+1}*\sum_{s->s'}( ...

  2. loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主

    #2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较   题目描述 "A fight? Co ...

  3. 【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法

    题目描述 你有一个m点生命值的奴隶主,奴隶主受伤未死且当前随从数目不超过k则再召唤一个m点生命值的奴隶主. T次询问,每次询问如果如果对面下出一个n点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输 ...

  4. LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)

    哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...

  5. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  6. [LOJ#2324]「清华集训 2017」小Y和二叉树

    [LOJ#2324]「清华集训 2017」小Y和二叉树 试题描述 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙 ...

  7. [LOJ#2323]「清华集训 2017」小Y和地铁

    [LOJ#2323]「清华集训 2017」小Y和地铁 试题描述 小Y是一个爱好旅行的OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的 ...

  8. 【UOJ#340】【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划)

    [UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划) 题面 UOJ 洛谷 题解 考虑如何暴力\(dp\). 设\(f[i][a][b][c]\)表示当前到了第\(i\) ...

  9. loj2324 「清华集训 2017」小 Y 和二叉树

    https://loj.ac/problem/2324 太智障,一开始以为中序遍历的第一个点一定是一个叶子,想了个贪心.然而,手算了一下,第一个点都过不了啊. input 5 2 3 4 1 3 3 ...

随机推荐

  1. codeforces781D Axel and Marston in Bitland

    题目链接:codeforces781D 正解:$bitset$+状压$DP$ 解题报告: 考虑用$f[t][0.1][i][j]$表示从$i$出发走了$2^t$步之后走到了$j$,且第一步是走的$0$ ...

  2. Redis可以做哪些事儿?

    Redis可以作为数据库,提供高速缓存,消息队列等功能,这里介绍Redis可以做的其中两件事: 1.提供缓存功能,作为缓存服务器; 2.轻量级的消息队列(MQ)进行使用. /// <summar ...

  3. Angular Material 教程之布局篇

    Angular Material 教程之布局篇 (一) : 布局简介https://segmentfault.com/a/1190000007215707 Angular Material 教程之布局 ...

  4. [spring]xml配置文件中bean属性的两种写法(p:configLocation <=> <property name="configLocation"/>)

    1.当作bean节点的属性:p:configLocation: <!-- mybatis文件配置,扫描所有mapper文件 --> <bean id="sqlSession ...

  5. 使用jenkins自动构建docker容器范例

    1.登录Jenkins,新建一个自由风格的软件项目. 2.源码管理选择git,并添加Repository URL.Credentials 3.构建选择 Execute Shell,命令如下: dock ...

  6. HDU - 5988The 2016 ACM-ICPC Asia Qingdao Regional ContestG - Coding Contest 最小费用流

    很巧妙的建边方式 题意:有n个区域,每个区域有一些人数si和食物bi,区域之间有m条定向路径,每条路径有人数通过上限ci.路径之间铺了电线,每当有人通过路径时有pi的概率会触碰到电线,但是第一个通过的 ...

  7. hdu1540线段树连续区间

    模板题>.<当初学了一波又忘了 #include<map> #include<set> #include<cmath> #include<queu ...

  8. IDEA运行时Information:java: Errors occurred while compiling module!

    在网上找了资源 说看一下项目JDK,字符编码UTF-8,但是都不很实用,突然发现: IDEA的右下角改变字符编码的按钮,先改成GBK然后再改成UTF-8,然后就OK了. 原因:导入开源的项目的时候,你 ...

  9. Nginx1.8 安装说明

    安装Nginx .安装pcre cd /usr/local/src mkdir /usr/local/pcre tar zxvf pcre-8.36.tar.gz cd pcre-8.36 ./con ...

  10. 【hive】子查询

    hive中是不支持子查询的 但是并不意味这不支持in 或者 not in in 或者not in 后边是定值的话是支持的 但是接定制是可以的 例如 select id from table not i ...