辗转相除法(又称欧几里得算法)是求最大公因数的算法

要求a,b的最大公约数(a>b),我们可以递归地求b,a%b的最大公约数,直到其中一个数变成0,这时另一个数就是a,b的最大公约数。

C++实现:

int gcd(int a,int b){

  retuen b?gcd(b,a%b):a;

}

或:

while(b!=0)  { 
  temp=a%b;   a=b;   b=temp;

}

证明:(引自百度百科)

设两数为a、b(b<a),用gcd(a,b)表示a,b的最大公约数,r=a (mod b) 为a除以b以后的余数,k为a除以b的商,即a÷b=k.......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。
第一步:令c=gcd(a,b),则设a=mc,b=nc
第二步:根据前提可知r =a-kb=mc-knc=(m-kn)c
第三步:根据第二步结果可知c也是r的因数
第四步:可以断定m-kn与n互质【否则,可设m-kn=xd,n=yd (d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)dc,b=nc=ycd,故a与b最大公约数成为cd,而非c,与前面结论矛盾】
从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。
证毕。
 
时间复杂度:
辗转相除法的运算速度为 O(n)
辗转相除法处理大数时非常高效,它需要的步骤不会超过较小数的位数(十进制下)的五倍。
 
最小公倍数lcm(a,b) = gcd(a,b) * (a/gcd(a,b)) * (b/gcd(a,b))
                          = a*b / gcd(a,b)
 
另外:a*b = gcd(a,b) * lcm(a,b)
 

最大公约数(gcd)和 最小公倍数(lcm)——辗转相除法的更多相关文章

  1. 最大公约数(GCD)与最小公倍数(LCM)的计算

    给出两个数a.b,求最大公约数(GCD)与最小公倍数(LCM) 一.最大公约数(GCD)    最大公约数的递归:  * 1.若a可以整除b,则最大公约数是b  * 2.如果1不成立,最大公约数便是b ...

  2. 最大公约数gcd、最小公倍数lcm

    最大公约数(辗转相除法) 循环: int gcd(int a,int b) { int r; ) { r=b%a; b=a; a=r; } return b; } 递归: int gcd(int a, ...

  3. 最大公约数gcd与最小公倍数lcm

    最大公约数:gcd 最大公倍数:lcm gcd和lcm的性质:(我觉得主要是第三点性质) 若gcd (

  4. ACM数论之旅3---最大公约数gcd和最小公倍数lcm(苦海无边,回头是岸( ̄∀ ̄))

    gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm     ( gcd就是gcd(a, b), ( •̀∀•́ ) ...

  5. 1012 最小公倍数LCM

    1012 最小公倍数LCM 基准时间限制:1 秒 空间限制:131072 KB 输入2个正整数A,B,求A与B的最小公倍数. Input 2个数A,B,中间用空格隔开.(1<= A,B < ...

  6. Solve Equation gcd(x,y)=gcd(x+y,lcm(x,y)) gcd(x,y)=1 => gcd(x*y,x+y)=1

    /** 题目:Solve Equation 链接:http://acm.hnust.edu.cn/JudgeOnline/problem.php?id=1643 //最终来源neu oj 2014新生 ...

  7. 1011 最大公约数GCD

    1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B < ...

  8. 51Nod--1011最大公约数GCD

    1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用 ...

  9. 关于两数的最大公约数gcd

    深根半夜里研究C++的语法,在弄到关于函数的定义 这一部分时突然想写个试试,就拿比较熟悉的gcd来好了. 活这么久gcd一直是用辗转相除法(或者说欧几里得算法)得出的,根据<算法导论>第三 ...

  10. hdu 5974 A Simple Math Problem gcd(x,y)=gcd((x+y),lcm(x,y))

    题目链接 题意 现有\[x+y=a\\lcm(x,y)=b\]找出满足条件的正整数\(x,y\). \(a\leq 2e5,b\leq 1e9,数据组数12W\). 思路 结论 \(gcd(x,y)= ...

随机推荐

  1. 常见企业IT支撑【5、内网DNS cache轻量服务dnsmasq】

    可参考http://www.centoscn.com/CentosServer/dns/2014/0113/2355.html 布署keepalive高可用方式 此方案只适合小型企业,规模少的情况下使 ...

  2. 【Leetcode 136】Single Number

    问题描述:给出一个整数数组,除了一个元素外,其他每个元素都出现了2次,找出只出现1次的元素. int singleNumber(vector<int>& nums); 分析:比较自 ...

  3. python 多线程要点

    要点整理 多线程 #coding=utf-8 import threading from time import ctime,sleep def music(func): for i in range ...

  4. 双口RAM,值得研究

    在FPGA设计过程中,使用好双口RAM,也是提高效率的一种方法. 官方将双口RAM分为简单双口RAM和真双口RAM. 简单双口RAM只有一个写端口,一个读端口. 真双口RAM分别有两个写端口和两个读端 ...

  5. 初学者手册-MyBatis踩坑记(org.apache.ibatis.binding.BindingException)

    1.参数绑定失败 org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.binding.Bi ...

  6. Nginx启停

    启动nginx /usr/local/nginx/nginx #不指定配置文件地址/usr/local/nginx/sbin/nginx -c /usr/local/nginx/conf/nginx. ...

  7. C++Windows核心编程读书笔记

    转自:http://www.makaidong.com/%E5%8D%9A%E5%AE%A2%E5%9B%AD%E6%96%87/71405.shtml "C++Windows核心编程读书笔 ...

  8. 灾难恢复:RPO与RTO

    许多企事业单位虽然已经认识到信息安全的重要性,却迟迟没有行动.其中的原因是多方面的,最主要的一个原因就是在如何建立容灾系统的问题上存在种种疑惑.容灾设计指标主要与容灾系统的数据恢复能力有关,最常见的设 ...

  9. 关于Fiddler常见问题之一

    Fiddler设置代理后,手机无法上网常见检查项 1.检查IP 2.确认端口在工作   >  “ netstat -ano” 3.设置手机代理>管理网络设置>高级>代理服务器, ...

  10. Java EE学习路线

    题记: 不行动,注定是个失败者! 1.coding:servlet->jsp 通过看视频快速上手 2.reading:Thinking in java 英文版 时间协调安排: 1.上课时认真听课 ...