首先添加上Heterogeneous Parallel Programming class 中 lab: Reduction的代码:

myReduction.c

// MP Reduction
// Given a list (lst) of length n
// Output its sum = lst[0] + lst[1] + ... + lst[n-1]; #include <wb.h> #define BLOCK_SIZE 512 //@@ You can change this #define wbCheck(stmt) do { \
cudaError_t err = stmt; \
if (err != cudaSuccess) { \
wbLog(ERROR, "Failed to run stmt ", #stmt); \
wbLog(ERROR, "Got CUDA error ... ", cudaGetErrorString(err)); \
return -; \
} \
} while() __global__ void reduction(float *g_idata, float *g_odata, unsigned int n){ __shared__ float sdata[BLOCK_SIZE]; // load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; sdata[tid] = (i < n) ? g_idata[i] : ; __syncthreads(); // do reduction in shared mem, stride is divided by 2,
for (unsigned int s=blockDim.x/; s>; s>>=)
{
//__syncthreads();
if (tid < s)
{
sdata[tid] += sdata[tid + s];
} __syncthreads();
} // write result for this block to global mem
if (tid == ) g_odata[blockIdx.x] = sdata[]; } __global__ void total(float * input, float * output, int len) {
//@@ Load a segment of the input vector into shared memory
__shared__ float partialSum[ * BLOCK_SIZE]; //blockDim.x is not okay, compile fail
unsigned int t = threadIdx.x;
unsigned int start = * blockIdx.x * blockDim.x;
if (start + t < len)
partialSum[t] = input[start + t];
else
partialSum[t] = ; if (start + blockDim.x + t < len)
partialSum[blockDim.x + t] = input[start + blockDim.x + t];
else
partialSum[blockDim.x + t] = ; //@@ Traverse the reduction tree
for (unsigned int stride = blockDim.x; stride >= ; stride >>= ) {
__syncthreads();
if (t < stride)
partialSum[t] += partialSum[t+stride];
}
//@@ Write the computed sum of the block to the output vector at the
//@@ correct index
if (t == )
output[blockIdx.x] = partialSum[];
} int main(int argc, char ** argv) {
int ii;
wbArg_t args;
float * hostInput; // The input 1D list
float * hostOutput; // The output list
float * deviceInput;
float * deviceOutput;
int numInputElements; // number of elements in the input list
int numOutputElements; // number of elements in the output list args = wbArg_read(argc, argv); wbTime_start(Generic, "Importing data and creating memory on host");
hostInput = (float *) wbImport(wbArg_getInputFile(args, ), &numInputElements); numOutputElements = numInputElements / (BLOCK_SIZE);
if (numInputElements % (BLOCK_SIZE)) {
numOutputElements++;
} //This for kernel total
/*numOutputElements = numInputElements / (BLOCK_SIZE <<1);
if (numInputElements % (BLOCK_SIZE)<<1) {
numOutputElements++;
} */
hostOutput = (float*) malloc(numOutputElements * sizeof(float)); wbTime_stop(Generic, "Importing data and creating memory on host"); wbLog(TRACE, "The number of input elements in the input is ", numInputElements);
wbLog(TRACE, "The number of output elements in the input is ", numOutputElements); wbTime_start(GPU, "Allocating GPU memory.");
//@@ Allocate GPU memory here
cudaMalloc((void **) &deviceInput, numInputElements * sizeof(float));
cudaMalloc((void **) &deviceOutput, numOutputElements * sizeof(float)); wbTime_stop(GPU, "Allocating GPU memory."); wbTime_start(GPU, "Copying input memory to the GPU.");
//@@ Copy memory to the GPU here
cudaMemcpy(deviceInput,
hostInput,
numInputElements * sizeof(float),
cudaMemcpyHostToDevice); wbTime_stop(GPU, "Copying input memory to the GPU.");
//@@ Initialize the grid and block dimensions here
dim3 dimGrid(numOutputElements, , );
dim3 dimBlock(BLOCK_SIZE, , ); wbTime_start(Compute, "Performing CUDA computation");
//@@ Launch the GPU Kernel here
reduction<<<dimGrid,dimBlock>>>(deviceInput, deviceOutput, numInputElements);
//total<<<dimGrid, dimBlock>>>(deviceInput, deviceOutput, numInputElements);
cudaDeviceSynchronize();
wbTime_stop(Compute, "Performing CUDA computation"); wbTime_start(Copy, "Copying output memory to the CPU");
//@@ Copy the GPU memory back to the CPU here
cudaMemcpy(hostOutput, deviceOutput, sizeof(float) * numOutputElements, cudaMemcpyDeviceToHost);
wbTime_stop(Copy, "Copying output memory to the CPU"); /********************************************************************
* Reduce output vector on the host
* NOTE: One could also perform the reduction of the output vector
* recursively and support any size input. For simplicity, we do not
* require that for this lab.
********************************************************************/
for (ii = ; ii < numOutputElements; ii++) {
hostOutput[] += hostOutput[ii];
} wbTime_start(GPU, "Freeing GPU Memory");
//@@ Free the GPU memory here
cudaFree(deviceInput);
cudaFree(deviceOutput); wbTime_stop(GPU, "Freeing GPU Memory"); wbSolution(args, hostOutput, ); free(hostInput);
free(hostOutput); return ;
}

4.3 Reduction代码(Heterogeneous Parallel Programming class lab)的更多相关文章

  1. PatentTips - Heterogeneous Parallel Primitives Programming Model

    BACKGROUND 1. Field of the Invention The present invention relates generally to a programming model ...

  2. Notes of Principles of Parallel Programming - TODO

    0.1 TopicNotes of Lin C., Snyder L.. Principles of Parallel Programming. Beijing: China Machine Pres ...

  3. Task Cancellation: Parallel Programming

    http://beyondrelational.com/modules/2/blogs/79/posts/11524/task-cancellation-parallel-programming-ii ...

  4. Samples for Parallel Programming with the .NET Framework

    The .NET Framework 4 includes significant advancements for developers writing parallel and concurren ...

  5. 2018-12-09 疑似bug_中文代码示例之Programming in Scala笔记第九十章

    续前文: 中文代码示例之Programming in Scala笔记第七八章 源文档库: program-in-chinese/Programming_in_Scala_study_notes_zh ...

  6. 2018-11-27 中文代码示例之Programming in Scala笔记第七八章

    续前文: 中文代码示例之Programming in Scala学习笔记第二三章 中文代码示例之Programming in Scala笔记第四五六章. 同样仅节选有意思的例程部分作演示之用. 源文档 ...

  7. 2018-11-16 中文代码示例之Programming in Scala笔记第四五六章

    续前文: 中文代码示例之Programming in Scala学习笔记第二三章. 同样仅节选有意思的例程部分作演示之用. 源文档仍在: program-in-chinese/Programming_ ...

  8. Parallel Programming for FPGAs 学习笔记(1)

    Parallel Programming for FPGAs 学习笔记(1)

  9. Parallel Programming AND Asynchronous Programming

    https://blogs.oracle.com/dave/ Java Memory Model...and the pragmatics of itAleksey Shipilevaleksey.s ...

随机推荐

  1. 破解之寻找OEP[手动脱壳](1)

    OEP:(Original Entry Point),程序的入口点,软件加壳就是隐藏了OEP(或者用了假的OEP), 只要我们找到程序真正的OEP,就可以立刻脱壳. PUSHAD (压栈) 代表程序的 ...

  2. oracle SQLserver 函数

    1.绝对值 S:select abs(-1) value O:select abs(-1) value from dual 2.取整(大) S:select ceiling(-1.001) value ...

  3. 深入理解c++中char*与wchar_t*与string以及wstring之间的相互转换

    本篇文章是对c++中的char*与wchar_t*与string以及wstring之间的相互转换进行了详细的分析介绍,需要的朋友参考下-复制代码 代码如下:    #ifndef USE_H_     ...

  4. Linq基本用法

  5. HDU2896+AC自动机

    ac自动机 模板题 /* */ #include<stdio.h> #include<string.h> #include<stdlib.h> #include&l ...

  6. HDU1565+状态压缩dp

    简单的压缩状态 dp /* 状态压缩dp 同hdu2167 利用滚动数组!! */ #include<stdio.h> #include<string.h> #include& ...

  7. Java在Windows的环境配置

    JDK环境变量配置的步骤如下: 1.我的电脑-->属性-->高级-->环境变量. 2.配置用户变量: 系统变量 a.新建 JAVA_HOME C:\Program Files\Jav ...

  8. Servlet课程0424(一) 通过实现Servlet接口来开发Servlet

    //这是我的第一个Servlet,使用实现Servlet接口的方式来开发 package com.tsinghua; import javax.servlet.*; import java.io.*; ...

  9. (转)CSS+DIV float 定位

    来自:http://www.cnblogs.com/iyangyuan/archive/2013/03/27/2983813.html 很早以前就接触过CSS,但对于浮动始终非常迷惑,可能是自身理解能 ...

  10. Why it is good practice to declare loggers private, static, and final?

    // Jakarta Commons Loggingprivate static final Log log = LogFactory.getLog(MyClass.class);The above ...