Gazebo Ros入门
First step with gazebo and ros
• setup a ROS workspace
• create projects for your simulated robot
• create a Gazebo world
• create your own robot model
• connect your robot model to ROS
• use a teleoperation node to control your robot
• add a camera to your robot
• use Rviz to vizualize all the robot information
Setup a new workspace
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace
cd ..
catkin_make
source ~/catkin_ws/devel/setup.bash
Create projects for your simulated robot
cd ~/catkin_ws/src
catkin_create_pkg mybot_gazebo gazebo_ros
catkin_create_pkg mybot_description
catkin_create_pkg mybot_control
Creating your own World
roscd mybot_gazebo
mkdir launch worlds
cd worlds
vim mybot.world
A basic world file defines at least a name:
<?xml version="1.0"?>
<sdf version="1.4">
<world name="myworld">
</world>
</sdf>
At first we just want to add some basic objects, like a ground and a basic illumination source inside the world tag.
<include>
<uri>model://sun</uri>
</include>
<include>
<uri>model://ground_plane</uri>
</include>
<include>
<uri>model://turtlebot</uri>
</include>
roscd mybot_gazebo/launch
vim mybot_world.launch
mybot_world.launch
<launch>
<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value="$(find mybot_gazebo)/worlds/mybot.world"/>
<arg name="gui" value="true"/>
</include>
</launch>
make a test
roslaunch mybot_gazebo mybot_world.launch
Creating your own Model
roscd mybot_description
mkdir urdf
cd urdf
gedit mybot.xacro
XACRO CONCEPTS
• xacro:include: Import the content from other file. We can divide the content in different xacros and merge them using xacro:include.
• property: Useful to define constant values. Use it later using ${property_name}
• xacro:macro: Macro with variable values. Later, we can use this macro from another xacro file, and we specify the required value for the variables. To use a macro, you have to include the file where the macro is, and call it using the macro's name and filling
the required values.
mybot.xacro
This file will be the main description of our robot. Let's put some xacro basic structure:
<?xml version="1.0"?>
<robot name="mybot" xmlns:xacro="http://www.ros.org/wiki/xacro">
<!-- Put here the robot description -->
</robot>
Let's define some physical properties for our robot, mainly the dimensions of the chassis, the caster wheel, the wheels and the camera:
<xacro:property name="PI" value="3.1415926535897931"/>
<xacro:property name="chassisHeight" value="0.1"/>
<xacro:property name="chassisLength" value="0.4"/>
<xacro:property name="chassisWidth" value="0.2"/>
<xacro:property name="chassisMass" value="50"/>
<xacro:property name="casterRadius" value="0.05"/>
<xacro:property name="casterMass" value="5"/>
<xacro:property name="wheelWidth" value="0.05"/>
<xacro:property name="wheelRadius" value="0.1"/>
<xacro:property name="wheelPos" value="0.2"/>
<xacro:property name="wheelMass" value="5"/>
<xacro:property name="cameraSize" value="0.05"/>
<xacro:property name="cameraMass" value="0.1"/>
We will also include three files :
<xacro:include filename="$(find mybot_description)/urdf/mybot.gazebo" />
<xacro:include filename="$(find mybot_description)/urdf/materials.xacro" />
<xacro:include filename="$(find mybot_description)/urdf/macros.xacro" />
These three correspond respectively to:
• all the gazebo-specific aspects of our robot
• definition of the materials used (mostly colors)
• definitions of some macros for easier description of the robot
Add it to mybot.xacro
<link name='chassis'>
<collision>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<geometry>
<box size="${chassisLength} ${chassisWidth} ${chassisHeight}"/>
</geometry>
</collision>
<visual>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<geometry>
<box size="${chassisLength} ${chassisWidth} ${chassisHeight}"/>
</geometry>
<material name="orange"/>
</visual>
<inertial>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<mass value="${chassisMass}"/>
<box_inertia m="${chassisMass}" x="${chassisLength}" y="${chassisWidth}" z="${chassisHeight}"/>
</inertial>
</link>
Add it to mybot.gazebo
<gazebo reference="chassis">
<material>Gazebo/Orange</material>
</gazebo>
Add this in the “materials.xacro” :
<?xml version="1.0"?>
<robot>
<material name="black">
<color rgba="0.0 0.0 0.0 1.0"/>
</material>
<material name="blue">
<color rgba="0.0 0.0 0.8 1.0"/>
</material>
<material name="green">
<color rgba="0.0 0.8 0.0 1.0"/>
</material>
<material name="grey">
<color rgba="0.2 0.2 0.2 1.0"/>
</material>
<material name="orange">
<color rgba="${255/255} ${108/255} ${10/255} 1.0"/>
</material>
<material name="brown">
<color rgba="${222/255} ${207/255} ${195/255} 1.0"/>
</material>
<material name="red">
<color rgba="0.8 0.0 0.0 1.0"/>
</material>
<material name="white">
<color rgba="1.0 1.0 1.0 1.0"/>
</material>
</robot>
Add this in the
macros.xacrofile, within the robot tag
<?xml version="1.0" ?>
<robot name="mybot" xmlns:xacro="http://www.ros.org/wiki/xacro">
<macro name="cylinder_inertia" params="m r h">
<inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"
iyy="${m*(3*r*r+h*h)/12}" iyz = "0"
izz="${m*r*r/2}"
/>
</macro>
<macro name="box_inertia" params="m x y z">
<inertia ixx="${m*(y*y+z*z)/12}" ixy = "0" ixz = "0"
iyy="${m*(x*x+z*z)/12}" iyz = "0"
izz="${m*(x*x+z*z)/12}"
/>
</macro>
<macro name="sphere_inertia" params="m r">
<inertia ixx="${2*m*r*r/5}" ixy = "0" ixz = "0"
iyy="${2*m*r*r/5}" iyz = "0"
izz="${2*m*r*r/5}"
/>
</macro>
</robot>
Add this before the chassis link in the mybot.xacro file :
<link name="footprint" />
<joint name="base_joint" type="fixed">
<parent link="footprint"/>
<child link="chassis"/>
</joint>
mybot_world.launch by adding the following two tags in the launch tag:
<!-- urdf xml robot description loaded on the Parameter Server, converting the xacro into a proper urdf file-->
<param name="robot_description" command="$(find xacro)/xacro.py '$(find mybot_description)/urdf/mybot.xacro'" />
<!-- push robot_description to factory and spawn robot in gazebo -->
<node name="mybot_spawn" pkg="gazebo_ros" type="spawn_model" output="screen"
args="-urdf -param robot_description -model mybot" />
make a test
roslaunch mybot_gazebo mybot_world.launch

mybot.xacro As a next step we add a caster wheel to the robot. This is the simplest wheel as we have no axis and no friction
<joint name="fixed" type="fixed">
<parent link="chassis"/>
<child link="caster_wheel"/>
</joint>
<link name="caster_wheel">
<collision>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<geometry>
<sphere radius="${casterRadius}"/>
</geometry>
</collision>
<visual>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<geometry>
<sphere radius="${casterRadius}"/>
</geometry>
<material name="red"/>
</visual>
<inertial>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<mass value="${casterMass}"/>
<sphere_inertia m="${casterMass}" r="${casterRadius}"/>
</inertial>
</link>
mybot.gazebo Add a gazebo tag in the gazebo file for this link :
<gazebo reference="caster_wheel">
<mu1>0.0</mu1>
<mu2>0.0</mu2>
<material>Gazebo/Red</material>
</gazebo>
As usual, we specify the color used in material. We also added mu1 and mu2, with value 0 to remove the friction.
macros.xacro .We could add the two links in the main file, but let's make one macro to make it simple.
<macro name="wheel" params="lr tY">
<link name="${lr}_wheel">
<collision>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<geometry>
<cylinder length="${wheelWidth}" radius="${wheelRadius}"/>
</geometry>
</collision>
<visual>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<geometry>
<cylinder length="${wheelWidth}" radius="${wheelRadius}"/>
</geometry>
<material name="black"/>
</visual>
<inertial>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<mass value="${wheelMass}"/>
<cylinder_inertia m="${wheelMass}" r="${wheelRadius}" h="${wheelWidth}"/>
</inertial>
</link>
<gazebo reference="${lr}_wheel">
<mu1 value="1.0"/>
<mu2 value="1.0"/>
<kp value="10000000.0" />
<kd value="1.0" />
<fdir1 value="1 0 0"/>
<material>Gazebo/Black</material>
</gazebo>
<joint name="${lr}_wheel_hinge" type="continuous">
<parent link="chassis"/>
<child link="${lr}_wheel"/>
<origin xyz="${-wheelPos+chassisLength/2} ${tY*wheelWidth/2+tY*chassisWidth/2} ${wheelRadius}" rpy="0 0 0" />
<axis xyz="0 1 0" rpy="0 0 0" />
<limit effort="100" velocity="100"/>
<joint_properties damping="0.0" friction="0.0"/>
</joint>
<transmission name="${lr}_trans">
<type>transmission_interface/SimpleTransmission</type>
<joint name="${lr}_wheel_hinge">
<hardwareInterface>EffortJointInterface</hardwareInterface>
</joint>
<actuator name="${lr}Motor">
<hardwareInterface>EffortJointInterface</hardwareInterface>
<mechanicalReduction>10</mechanicalReduction>
</actuator>
</transmission>
</macro>
mybot.xacro
<wheel lr="left" tY="1"/>
<wheel lr="right" tY="-1"/>

Connect your robot to ROS
Alright, our robot is all nice and has this new car smell, but we can't do anything with it yet as it has no connection with
ROS In order to add this connection we need to add gazebeo plugins to our model. There are different kinds of plugins:
- World: Dynamic changes to the world, e.g. Physics, like illumination or gravity, inserting models
- Model: Manipulation of models (robots), e.g. move the robots
- Sensor: Feedback from virtual sensor, like camera, laser scanner
- System: Plugins that are loaded by the GUI, like saving images
First of all we'll use a plugin to provide access to the joints of the wheels. The transmission tags in our URDF will be used by this plugin the define how to link the joints to controllers. To activate the plugin, add the following to
mybot.gazebo:
<gazebo>
<plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
<robotNamespace>/mybot</robotNamespace>
</plugin>
</gazebo>
With this plugin, we will be able to control the joints, however we need to provide some extra configuration and explicitely
start controllers for the joints. In order to do so, we'll use the package mybot_control that we have defined before. Let's first create the configuration file:
roscd mybot_control
mkdir config
cd config
vim mybot_control.yaml
This file will define three controllers: one for each wheel, connections to the joint by the transmission tag, one for
publishing the joint states. It also defined the PID gains to use for this controller:
mybot:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 50
# Effort Controllers ---------------------------------------
leftWheel_effort_controller:
type: effort_controllers/JointEffortController
joint: left_wheel_hinge
pid: {p: 100.0, i: 0.1, d: 10.0}
rightWheel_effort_controller:
type: effort_controllers/JointEffortController
joint: right_wheel_hinge
pid: {p: 100.0, i: 0.1, d: 10.0}
Now we need to create a launch file to start the controllers. For this let's do:
roscd mybot_control
mkdir launch
cd launch
vim mybot_control.launch
In this file we'll put two things. First we'll load the configuration and the controllers, and we'll also start a node that will
provide 3D transforms (tf) of our robot. This is not mandatory but that makes the simulation more complete
<launch>
<!-- Load joint controller configurations from YAML file to parameter server -->
<rosparam file="$(find mybot_control)/config/mybot_control.yaml" command="load"/>
<!-- load the controllers -->
<node name="controller_spawner"
pkg="controller_manager"
type="spawner" respawn="false"
output="screen" ns="/mybot"
args="joint_state_controller
rightWheel_effort_controller
leftWheel_effort_controller"/>
<!-- convert joint states to TF transforms for rviz, etc -->
<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" respawn="false" output="screen">
<param name="robot_description" command="$(find xacro)/xacro.py '$(find mybot_description)/urdf/mybot.xacro'" />
<remap from="/joint_states" to="/mybot/joint_states" />
</node>
</launch>
make a test
roslaunch mybot_gazebo mybot_world.launch
roslaunch mybot_control mybot.launch
rostopic list
We could launch our model on gazebo and then launch the controller, but to save some time (and terminals), we'll start the controllers automatically by adding a line to the mybot_world.launch in the mybot_gazebo package :
<!-- ros_control mybot launch file -->
<include file="$(find mybot_control)/launch/mybot_control.launch" />
rostopic pub -1 /mybot/leftWheel_effort_controller/command std_msgs/Float64 "data: 1.5"
rostopic pub -1 /mybot/rightWheel_effort_controller/command std_msgs/Float64 "data: 1.0"
rostopic echo /mybot/joint_states
Teleoperation of your robot
Adding a camera
<joint name="camera_joint" type="fixed">
<axis xyz="0 1 0" />
<origin xyz="0 0 0.2" rpy="0 0 0"/>
<parent link="footprint"/>
<child link="camera"/>
</joint>
<link name="camera">
<collision>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<box size="${cameraSize} ${cameraSize} ${cameraSize}"/>
</geometry>
</collision>
<visual>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<box size="${cameraSize} ${cameraSize} ${cameraSize}"/>
</geometry>
<material name="blue"/>
</visual>
<inertial>
<mass value="${cameraMass}" />
<origin xyz="0 0 0" rpy="0 0 0"/>
<box_inertia m="${cameraMass}" x="${cameraSize}" y="${cameraSize}" z="${cameraSize}" />
</inertial>
</link>
Add the plugin to gazebo file
<gazebo reference="camera">
<material>Gazebo/Blue</material>
<sensor type="camera" name="camera1">
<update_rate>30.0</update_rate>
<camera name="head">
<horizontal_fov>1.3962634</horizontal_fov>
<image>
<width>800</width>
<height>800</height>
<format>R8G8B8</format>
</image>
<clip>
<near>0.02</near>
<far>300</far>
</clip>
</camera>
<plugin name="camera_controller" filename="libgazebo_ros_camera.so">
<alwaysOn>true</alwaysOn>
<updateRate>0.0</updateRate>
<cameraName>mybot/camera1</cameraName>
<imageTopicName>image_raw</imageTopicName>
<cameraInfoTopicName>camera_info</cameraInfoTopicName>
<frameName>camera_link</frameName>
<hackBaseline>0.07</hackBaseline>
<distortionK1>0.0</distortionK1>
<distortionK2>0.0</distortionK2>
<distortionK3>0.0</distortionK3>
<distortionT1>0.0</distortionT1>
<distortionT2>0.0</distortionT2>
</plugin>
</sensor>
</gazebo>
rosrun image_view image_view image:=/mybot/camera1/image_raw
Visualisation with RViz
rosrun rviz rviz
整个代码框架如下:

Gazebo Ros入门的更多相关文章
- SLAM+语音机器人DIY系列:(二)ROS入门——1.ROS是什么
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- ROS入门学习
ROS学习笔记 ROS入门网站; ROS入门书籍 ROS主要包含包括功能包.节点.话题.消息类型和服务; ROS功能包/软件包(Packages) ROS软件包是一组用于实现特定功能的相关文件的集合, ...
- ROS_Kinetic_03 ROS入门向导
ROS_Kinetic_03 ROS入门向导 每个人都有不同的学习习惯和爱好并针对不同的应用进行ROS相关设计与开发, 没有固定不变的学习模式,但以下的内容是通常都会用到的. 1. ROS基础教程 1 ...
- SLAM+语音机器人DIY系列:(二)ROS入门——2.ROS系统整体架构
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- SLAM+语音机器人DIY系列:(二)ROS入门——3.在ubuntu16.04中安装ROS kinetic
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- SLAM+语音机器人DIY系列:(二)ROS入门——4.如何编写ROS的第一个程序hello_world
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- SLAM+语音机器人DIY系列:(二)ROS入门——5.编写简单的消息发布器和订阅器
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- SLAM+语音机器人DIY系列:(二)ROS入门——6.编写简单的service和client
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- SLAM+语音机器人DIY系列:(二)ROS入门——7.理解tf的原理
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
随机推荐
- javaEE学习笔记-利用DOM4J解析xml至数据库
xml代码文件名:test02.xml <ACCESOS> <item> <SOCIO> <NUMERO>00045050</NUMERO> ...
- 实现struts2框架
Struts最早是作为Apache Jakarta项目的组成部分,项目的创立者希望通过对该项目的研究,改进和提高JavaServer Pages .Servlet.标签库以及面向对象的技术水准.最初的 ...
- Linux系统上安装mysql数据库
一:下载并且上传安装包到linux系统上 1:下载地址:http://dev.mysql.com/downloads/mysql/ 2:通过LeapFtp工具,将windows上的mysql安装包拷贝 ...
- ibatis返回结果映射到HashMap时,列名无效的问题
遇到问题: 1.项目开发过程中在xml配置文件中使用$tableName/sql$时,报"列名无效"错误,后来经过查询,发现是ibatis缓存 了上一次查询的表结构的原因.解决办法 ...
- Oracle 版本查看及版本号说明
http://blog.163.com/magicc_love/blog/static/185853662201210194592757/ select * from v$version; 或sele ...
- [未完成][Mooc]关于Linxu的总结(一)
视频1:Linux之前有个Minix(这个是一个教授用来教学用的)开源的,不是编译过的,不能通过QQ.exe找到其源码.后来Linus这个家伙搞了一个Linux.服务器领域超过百分之八十.linux是 ...
- Spring 简单入门实例
首先新建一个Web 项目 导入相应Jar 包 <?xml version="1.0" encoding="UTF-8"?> <beans xm ...
- 关于CSS的一些总结
通过对CSS基础一天的学习以及练习,觉得自己以前还是蛮无知的,一直以为CSS样式是别人写好的,自己只需要像导包一样拿过来用就可以.直到自己认真学了之后才直到是什么样的.自己如果不去敲代码感觉永远都学不 ...
- Apache Commons 简述
Apache Commons 是一个关注于可复用的 Java 组件的 Apache 项目.Apache Commons 由三部分构成: Commons Proper - 一个可复用的 Java 组件库 ...
- Jersey(1.19.1) - Root Resource Classes
Root resource classes are POJOs (Plain Old Java Objects) that are annotated with @Path have at least ...