Gazebo Ros入门
First step with gazebo and ros
• setup a ROS workspace
• create projects for your simulated robot
• create a Gazebo world
• create your own robot model
• connect your robot model to ROS
• use a teleoperation node to control your robot
• add a camera to your robot
• use Rviz to vizualize all the robot information
Setup a new workspace
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace
cd ..
catkin_make
source ~/catkin_ws/devel/setup.bash
Create projects for your simulated robot
cd ~/catkin_ws/src
catkin_create_pkg mybot_gazebo gazebo_ros
catkin_create_pkg mybot_description
catkin_create_pkg mybot_control
Creating your own World
roscd mybot_gazebo
mkdir launch worlds
cd worlds
vim mybot.world
A basic world file defines at least a name:
<?xml version="1.0"?>
<sdf version="1.4">
<world name="myworld">
</world>
</sdf>
At first we just want to add some basic objects, like a ground and a basic illumination source inside the world tag.
<include>
<uri>model://sun</uri>
</include>
<include>
<uri>model://ground_plane</uri>
</include>
<include>
<uri>model://turtlebot</uri>
</include>
roscd mybot_gazebo/launch
vim mybot_world.launch
mybot_world.launch
<launch>
<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value="$(find mybot_gazebo)/worlds/mybot.world"/>
<arg name="gui" value="true"/>
</include>
</launch>
make a test
roslaunch mybot_gazebo mybot_world.launch
Creating your own Model
roscd mybot_description
mkdir urdf
cd urdf
gedit mybot.xacro
XACRO CONCEPTS
• xacro:include: Import the content from other file. We can divide the content in different xacros and merge them using xacro:include.
• property: Useful to define constant values. Use it later using ${property_name}
• xacro:macro: Macro with variable values. Later, we can use this macro from another xacro file, and we specify the required value for the variables. To use a macro, you have to include the file where the macro is, and call it using the macro's name and filling
the required values.
mybot.xacro
This file will be the main description of our robot. Let's put some xacro basic structure:
<?xml version="1.0"?>
<robot name="mybot" xmlns:xacro="http://www.ros.org/wiki/xacro">
<!-- Put here the robot description -->
</robot>
Let's define some physical properties for our robot, mainly the dimensions of the chassis, the caster wheel, the wheels and the camera:
<xacro:property name="PI" value="3.1415926535897931"/>
<xacro:property name="chassisHeight" value="0.1"/>
<xacro:property name="chassisLength" value="0.4"/>
<xacro:property name="chassisWidth" value="0.2"/>
<xacro:property name="chassisMass" value="50"/>
<xacro:property name="casterRadius" value="0.05"/>
<xacro:property name="casterMass" value="5"/>
<xacro:property name="wheelWidth" value="0.05"/>
<xacro:property name="wheelRadius" value="0.1"/>
<xacro:property name="wheelPos" value="0.2"/>
<xacro:property name="wheelMass" value="5"/>
<xacro:property name="cameraSize" value="0.05"/>
<xacro:property name="cameraMass" value="0.1"/>
We will also include three files :
<xacro:include filename="$(find mybot_description)/urdf/mybot.gazebo" />
<xacro:include filename="$(find mybot_description)/urdf/materials.xacro" />
<xacro:include filename="$(find mybot_description)/urdf/macros.xacro" />
These three correspond respectively to:
• all the gazebo-specific aspects of our robot
• definition of the materials used (mostly colors)
• definitions of some macros for easier description of the robot
Add it to mybot.xacro
<link name='chassis'>
<collision>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<geometry>
<box size="${chassisLength} ${chassisWidth} ${chassisHeight}"/>
</geometry>
</collision>
<visual>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<geometry>
<box size="${chassisLength} ${chassisWidth} ${chassisHeight}"/>
</geometry>
<material name="orange"/>
</visual>
<inertial>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<mass value="${chassisMass}"/>
<box_inertia m="${chassisMass}" x="${chassisLength}" y="${chassisWidth}" z="${chassisHeight}"/>
</inertial>
</link>
Add it to mybot.gazebo
<gazebo reference="chassis">
<material>Gazebo/Orange</material>
</gazebo>
Add this in the “materials.xacro” :
<?xml version="1.0"?>
<robot>
<material name="black">
<color rgba="0.0 0.0 0.0 1.0"/>
</material>
<material name="blue">
<color rgba="0.0 0.0 0.8 1.0"/>
</material>
<material name="green">
<color rgba="0.0 0.8 0.0 1.0"/>
</material>
<material name="grey">
<color rgba="0.2 0.2 0.2 1.0"/>
</material>
<material name="orange">
<color rgba="${255/255} ${108/255} ${10/255} 1.0"/>
</material>
<material name="brown">
<color rgba="${222/255} ${207/255} ${195/255} 1.0"/>
</material>
<material name="red">
<color rgba="0.8 0.0 0.0 1.0"/>
</material>
<material name="white">
<color rgba="1.0 1.0 1.0 1.0"/>
</material>
</robot>
Add this in the
macros.xacro
file, within the robot tag
<?xml version="1.0" ?>
<robot name="mybot" xmlns:xacro="http://www.ros.org/wiki/xacro">
<macro name="cylinder_inertia" params="m r h">
<inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"
iyy="${m*(3*r*r+h*h)/12}" iyz = "0"
izz="${m*r*r/2}"
/>
</macro>
<macro name="box_inertia" params="m x y z">
<inertia ixx="${m*(y*y+z*z)/12}" ixy = "0" ixz = "0"
iyy="${m*(x*x+z*z)/12}" iyz = "0"
izz="${m*(x*x+z*z)/12}"
/>
</macro>
<macro name="sphere_inertia" params="m r">
<inertia ixx="${2*m*r*r/5}" ixy = "0" ixz = "0"
iyy="${2*m*r*r/5}" iyz = "0"
izz="${2*m*r*r/5}"
/>
</macro>
</robot>
Add this before the chassis link in the mybot.xacro file :
<link name="footprint" />
<joint name="base_joint" type="fixed">
<parent link="footprint"/>
<child link="chassis"/>
</joint>
mybot_world.launch by adding the following two tags in the launch tag:
<!-- urdf xml robot description loaded on the Parameter Server, converting the xacro into a proper urdf file-->
<param name="robot_description" command="$(find xacro)/xacro.py '$(find mybot_description)/urdf/mybot.xacro'" />
<!-- push robot_description to factory and spawn robot in gazebo -->
<node name="mybot_spawn" pkg="gazebo_ros" type="spawn_model" output="screen"
args="-urdf -param robot_description -model mybot" />
make a test
roslaunch mybot_gazebo mybot_world.launch
mybot.xacro As a next step we add a caster wheel to the robot. This is the simplest wheel as we have no axis and no friction
<joint name="fixed" type="fixed">
<parent link="chassis"/>
<child link="caster_wheel"/>
</joint>
<link name="caster_wheel">
<collision>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<geometry>
<sphere radius="${casterRadius}"/>
</geometry>
</collision>
<visual>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<geometry>
<sphere radius="${casterRadius}"/>
</geometry>
<material name="red"/>
</visual>
<inertial>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<mass value="${casterMass}"/>
<sphere_inertia m="${casterMass}" r="${casterRadius}"/>
</inertial>
</link>
mybot.gazebo Add a gazebo tag in the gazebo file for this link :
<gazebo reference="caster_wheel">
<mu1>0.0</mu1>
<mu2>0.0</mu2>
<material>Gazebo/Red</material>
</gazebo>
As usual, we specify the color used in material. We also added mu1 and mu2, with value 0 to remove the friction.
macros.xacro .We could add the two links in the main file, but let's make one macro to make it simple.
<macro name="wheel" params="lr tY">
<link name="${lr}_wheel">
<collision>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<geometry>
<cylinder length="${wheelWidth}" radius="${wheelRadius}"/>
</geometry>
</collision>
<visual>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<geometry>
<cylinder length="${wheelWidth}" radius="${wheelRadius}"/>
</geometry>
<material name="black"/>
</visual>
<inertial>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<mass value="${wheelMass}"/>
<cylinder_inertia m="${wheelMass}" r="${wheelRadius}" h="${wheelWidth}"/>
</inertial>
</link>
<gazebo reference="${lr}_wheel">
<mu1 value="1.0"/>
<mu2 value="1.0"/>
<kp value="10000000.0" />
<kd value="1.0" />
<fdir1 value="1 0 0"/>
<material>Gazebo/Black</material>
</gazebo>
<joint name="${lr}_wheel_hinge" type="continuous">
<parent link="chassis"/>
<child link="${lr}_wheel"/>
<origin xyz="${-wheelPos+chassisLength/2} ${tY*wheelWidth/2+tY*chassisWidth/2} ${wheelRadius}" rpy="0 0 0" />
<axis xyz="0 1 0" rpy="0 0 0" />
<limit effort="100" velocity="100"/>
<joint_properties damping="0.0" friction="0.0"/>
</joint>
<transmission name="${lr}_trans">
<type>transmission_interface/SimpleTransmission</type>
<joint name="${lr}_wheel_hinge">
<hardwareInterface>EffortJointInterface</hardwareInterface>
</joint>
<actuator name="${lr}Motor">
<hardwareInterface>EffortJointInterface</hardwareInterface>
<mechanicalReduction>10</mechanicalReduction>
</actuator>
</transmission>
</macro>
mybot.xacro
<wheel lr="left" tY="1"/>
<wheel lr="right" tY="-1"/>
Connect your robot to ROS
Alright, our robot is all nice and has this new car smell, but we can't do anything with it yet as it has no connection with
ROS In order to add this connection we need to add gazebeo plugins to our model. There are different kinds of plugins:
- World: Dynamic changes to the world, e.g. Physics, like illumination or gravity, inserting models
- Model: Manipulation of models (robots), e.g. move the robots
- Sensor: Feedback from virtual sensor, like camera, laser scanner
- System: Plugins that are loaded by the GUI, like saving images
First of all we'll use a plugin to provide access to the joints of the wheels. The transmission tags in our URDF will be used by this plugin the define how to link the joints to controllers. To activate the plugin, add the following to
mybot.gazebo
:
<gazebo>
<plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
<robotNamespace>/mybot</robotNamespace>
</plugin>
</gazebo>
With this plugin, we will be able to control the joints, however we need to provide some extra configuration and explicitely
start controllers for the joints. In order to do so, we'll use the package mybot_control that we have defined before. Let's first create the configuration file:
roscd mybot_control
mkdir config
cd config
vim mybot_control.yaml
This file will define three controllers: one for each wheel, connections to the joint by the transmission tag, one for
publishing the joint states. It also defined the PID gains to use for this controller:
mybot:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 50
# Effort Controllers ---------------------------------------
leftWheel_effort_controller:
type: effort_controllers/JointEffortController
joint: left_wheel_hinge
pid: {p: 100.0, i: 0.1, d: 10.0}
rightWheel_effort_controller:
type: effort_controllers/JointEffortController
joint: right_wheel_hinge
pid: {p: 100.0, i: 0.1, d: 10.0}
Now we need to create a launch file to start the controllers. For this let's do:
roscd mybot_control
mkdir launch
cd launch
vim mybot_control.launch
In this file we'll put two things. First we'll load the configuration and the controllers, and we'll also start a node that will
provide 3D transforms (tf) of our robot. This is not mandatory but that makes the simulation more complete
<launch>
<!-- Load joint controller configurations from YAML file to parameter server -->
<rosparam file="$(find mybot_control)/config/mybot_control.yaml" command="load"/>
<!-- load the controllers -->
<node name="controller_spawner"
pkg="controller_manager"
type="spawner" respawn="false"
output="screen" ns="/mybot"
args="joint_state_controller
rightWheel_effort_controller
leftWheel_effort_controller"/>
<!-- convert joint states to TF transforms for rviz, etc -->
<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" respawn="false" output="screen">
<param name="robot_description" command="$(find xacro)/xacro.py '$(find mybot_description)/urdf/mybot.xacro'" />
<remap from="/joint_states" to="/mybot/joint_states" />
</node>
</launch>
make a test
roslaunch mybot_gazebo mybot_world.launch
roslaunch mybot_control mybot.launch
rostopic list
We could launch our model on gazebo and then launch the controller, but to save some time (and terminals), we'll start the controllers automatically by adding a line to the mybot_world.launch
in the mybot_gazebo package :
<!-- ros_control mybot launch file -->
<include file="$(find mybot_control)/launch/mybot_control.launch" />
rostopic pub -1 /mybot/leftWheel_effort_controller/command std_msgs/Float64 "data: 1.5"
rostopic pub -1 /mybot/rightWheel_effort_controller/command std_msgs/Float64 "data: 1.0"
rostopic echo /mybot/joint_states
Teleoperation of your robot
Adding a camera
<joint name="camera_joint" type="fixed">
<axis xyz="0 1 0" />
<origin xyz="0 0 0.2" rpy="0 0 0"/>
<parent link="footprint"/>
<child link="camera"/>
</joint>
<link name="camera">
<collision>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<box size="${cameraSize} ${cameraSize} ${cameraSize}"/>
</geometry>
</collision>
<visual>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<box size="${cameraSize} ${cameraSize} ${cameraSize}"/>
</geometry>
<material name="blue"/>
</visual>
<inertial>
<mass value="${cameraMass}" />
<origin xyz="0 0 0" rpy="0 0 0"/>
<box_inertia m="${cameraMass}" x="${cameraSize}" y="${cameraSize}" z="${cameraSize}" />
</inertial>
</link>
Add the plugin to gazebo file
<gazebo reference="camera">
<material>Gazebo/Blue</material>
<sensor type="camera" name="camera1">
<update_rate>30.0</update_rate>
<camera name="head">
<horizontal_fov>1.3962634</horizontal_fov>
<image>
<width>800</width>
<height>800</height>
<format>R8G8B8</format>
</image>
<clip>
<near>0.02</near>
<far>300</far>
</clip>
</camera>
<plugin name="camera_controller" filename="libgazebo_ros_camera.so">
<alwaysOn>true</alwaysOn>
<updateRate>0.0</updateRate>
<cameraName>mybot/camera1</cameraName>
<imageTopicName>image_raw</imageTopicName>
<cameraInfoTopicName>camera_info</cameraInfoTopicName>
<frameName>camera_link</frameName>
<hackBaseline>0.07</hackBaseline>
<distortionK1>0.0</distortionK1>
<distortionK2>0.0</distortionK2>
<distortionK3>0.0</distortionK3>
<distortionT1>0.0</distortionT1>
<distortionT2>0.0</distortionT2>
</plugin>
</sensor>
</gazebo>
rosrun image_view image_view image:=/mybot/camera1/image_raw
Visualisation with RViz
rosrun rviz rviz
整个代码框架如下:
Gazebo Ros入门的更多相关文章
- SLAM+语音机器人DIY系列:(二)ROS入门——1.ROS是什么
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- ROS入门学习
ROS学习笔记 ROS入门网站; ROS入门书籍 ROS主要包含包括功能包.节点.话题.消息类型和服务; ROS功能包/软件包(Packages) ROS软件包是一组用于实现特定功能的相关文件的集合, ...
- ROS_Kinetic_03 ROS入门向导
ROS_Kinetic_03 ROS入门向导 每个人都有不同的学习习惯和爱好并针对不同的应用进行ROS相关设计与开发, 没有固定不变的学习模式,但以下的内容是通常都会用到的. 1. ROS基础教程 1 ...
- SLAM+语音机器人DIY系列:(二)ROS入门——2.ROS系统整体架构
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- SLAM+语音机器人DIY系列:(二)ROS入门——3.在ubuntu16.04中安装ROS kinetic
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- SLAM+语音机器人DIY系列:(二)ROS入门——4.如何编写ROS的第一个程序hello_world
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- SLAM+语音机器人DIY系列:(二)ROS入门——5.编写简单的消息发布器和订阅器
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- SLAM+语音机器人DIY系列:(二)ROS入门——6.编写简单的service和client
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- SLAM+语音机器人DIY系列:(二)ROS入门——7.理解tf的原理
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
随机推荐
- A very hard Aoshu problem
A very hard Aoshu proble Problem Description Aoshu is very popular among primary school students. It ...
- python打印详细的异常信息
#!/usr/bin/env python #coding=utf-8 import traceback try: 1/0 except Exception, e: print e print tra ...
- 机器学习之SVM(支持向量机)
支持向量机(SVM)是当前非常流行的监督学习方法,其核心主要有两个: 构造一个极大边距分离器--与样例点具有最大可能距离的决策边界: 将在原输入空间中线性不可分的样例映射到高维空间中,从而进行线性分离 ...
- 去掉VC2010 编辑器里出现的红色波浪线
在VC2010中浏览代码的时候就大片的红线看着不舒服 其实不关VS的事,原因在于visual assist. 在VAssistX菜单栏->Visual Assist X Options-&g ...
- LeetCode 345
Reverse Vowels of a String Write a function that takes a string as input and reverse only the vowels ...
- 关于FastStone Capture输入中文出现乱码.
关于FastStone Capture 中输入中文出现乱码. 根据我的使用,公司用的生产机是英文操作系统,这个时候用FSCapture输入中文就是乱码.英文是正常的. 自己的机器是中文的.输入中文和英 ...
- 把数据库中的字符串格式转为long类型
背景: 在做接口时,需要把数据库中所有ID取出来,用jmter做一些数据关联,问题来了,数据库中的ID转换出来为字符型,而接口是需要使用LONG型,所以在导出来后,数据一直报类型不为long,那如何把 ...
- Linux 命令 - ss: 查看套接字统计信息
命令格式 ss [options] [ FILTER ] 命令参数 -h, --help 显示帮助信息. -V, --version 显示版本信息. -n, --numeric 不解析服务名称. -r ...
- 【转载】Android推送方案分析(MQTT/XMPP/GCM)
http://m.oschina.net/blog/82059 本文主旨在于,对目前Android平台上最主流的几种消息推送方案进行分析和对比,比较客观地反映出这些推送方案的优缺点,帮助大家选择最合适 ...
- redis学习-day1
1.nosql数据库的一种. 2.Redis 是一种开源的,先进的key-value存储.它通常被称为数据结构服务器.因为键可以包含字符串.哈希.链表.集合和有序集合. 特点: 3.为了保证效率,数据 ...