教程代码

First step with gazebo and ros

• setup a ROS workspace

• create projects for your simulated robot

• create a Gazebo world

• create your own robot model

• connect your robot model to ROS

• use a teleoperation node to control your robot

• add a camera to your robot

• use Rviz to vizualize all the robot information

Setup a new workspace

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace
cd ..
catkin_make
source ~/catkin_ws/devel/setup.bash

Create projects for your simulated robot

cd ~/catkin_ws/src
catkin_create_pkg mybot_gazebo gazebo_ros
catkin_create_pkg mybot_description
catkin_create_pkg mybot_control

Creating your own World

roscd mybot_gazebo
mkdir launch worlds
cd worlds
vim mybot.world

A basic world file defines at least a name:

<?xml version="1.0"?>
<sdf version="1.4">
<world name="myworld">
</world>
</sdf>

At first we just want to add some basic objects, like a ground and a basic illumination source inside the world tag.

<include>
<uri>model://sun</uri>
</include> <include>
<uri>model://ground_plane</uri>
</include> <include>
<uri>model://turtlebot</uri>
</include>
roscd mybot_gazebo/launch
vim mybot_world.launch

mybot_world.launch

<launch>
<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value="$(find mybot_gazebo)/worlds/mybot.world"/>
<arg name="gui" value="true"/>
</include>
</launch>

make a test

roslaunch mybot_gazebo mybot_world.launch

Creating your own Model

roscd mybot_description
mkdir urdf
cd urdf
gedit mybot.xacro
XACRO CONCEPTS

• xacro:include: Import the content from other file. We can divide the content in different xacros and merge them using xacro:include.

• property: Useful to define constant values. Use it later using ${property_name}

• xacro:macro: Macro with variable values. Later, we can use this macro from another xacro file, and we specify the required value for the variables. To use a macro, you have to include the file where the macro is, and call it using the macro's name and filling

the required values.

mybot.xacro

This file will be the main description of our robot. Let's put some xacro basic structure:

<?xml version="1.0"?>
<robot name="mybot" xmlns:xacro="http://www.ros.org/wiki/xacro">
<!-- Put here the robot description -->
</robot>

Let's define some physical properties for our robot, mainly the dimensions of the chassis, the caster wheel, the wheels and the camera:

<xacro:property name="PI" value="3.1415926535897931"/>

<xacro:property name="chassisHeight" value="0.1"/>
<xacro:property name="chassisLength" value="0.4"/>
<xacro:property name="chassisWidth" value="0.2"/>
<xacro:property name="chassisMass" value="50"/> <xacro:property name="casterRadius" value="0.05"/>
<xacro:property name="casterMass" value="5"/> <xacro:property name="wheelWidth" value="0.05"/>
<xacro:property name="wheelRadius" value="0.1"/>
<xacro:property name="wheelPos" value="0.2"/>
<xacro:property name="wheelMass" value="5"/> <xacro:property name="cameraSize" value="0.05"/>
<xacro:property name="cameraMass" value="0.1"/>

We will also include three files :

 <xacro:include filename="$(find mybot_description)/urdf/mybot.gazebo" />
<xacro:include filename="$(find mybot_description)/urdf/materials.xacro" />
<xacro:include filename="$(find mybot_description)/urdf/macros.xacro" />

These three correspond respectively to:

• all the gazebo-specific aspects of our robot

• definition of the materials used (mostly colors)

• definitions of some macros for easier description of the robot

Add it to mybot.xacro

<link name='chassis'>
<collision>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<geometry>
<box size="${chassisLength} ${chassisWidth} ${chassisHeight}"/>
</geometry>
</collision>
<visual>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<geometry>
<box size="${chassisLength} ${chassisWidth} ${chassisHeight}"/>
</geometry>
<material name="orange"/>
</visual>
<inertial>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<mass value="${chassisMass}"/>
<box_inertia m="${chassisMass}" x="${chassisLength}" y="${chassisWidth}" z="${chassisHeight}"/>
</inertial>
</link>

Add it to mybot.gazebo

<gazebo reference="chassis">
<material>Gazebo/Orange</material>
</gazebo>

Add this in the “materials.xacro” :

<?xml version="1.0"?>
<robot>
<material name="black">
<color rgba="0.0 0.0 0.0 1.0"/>
</material> <material name="blue">
<color rgba="0.0 0.0 0.8 1.0"/>
</material> <material name="green">
<color rgba="0.0 0.8 0.0 1.0"/>
</material> <material name="grey">
<color rgba="0.2 0.2 0.2 1.0"/>
</material> <material name="orange">
<color rgba="${255/255} ${108/255} ${10/255} 1.0"/>
</material> <material name="brown">
<color rgba="${222/255} ${207/255} ${195/255} 1.0"/>
</material> <material name="red">
<color rgba="0.8 0.0 0.0 1.0"/>
</material> <material name="white">
<color rgba="1.0 1.0 1.0 1.0"/>
</material>
</robot>

Add this in the macros.xacro file, within the robot tag

<?xml version="1.0" ?>
<robot name="mybot" xmlns:xacro="http://www.ros.org/wiki/xacro"> <macro name="cylinder_inertia" params="m r h">
<inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"
iyy="${m*(3*r*r+h*h)/12}" iyz = "0"
izz="${m*r*r/2}"
/>
</macro> <macro name="box_inertia" params="m x y z">
<inertia ixx="${m*(y*y+z*z)/12}" ixy = "0" ixz = "0"
iyy="${m*(x*x+z*z)/12}" iyz = "0"
izz="${m*(x*x+z*z)/12}"
/>
</macro> <macro name="sphere_inertia" params="m r">
<inertia ixx="${2*m*r*r/5}" ixy = "0" ixz = "0"
iyy="${2*m*r*r/5}" iyz = "0"
izz="${2*m*r*r/5}"
/>
</macro> </robot>

Add this before the chassis link in the mybot.xacro file :

<link name="footprint" />

<joint name="base_joint" type="fixed">
<parent link="footprint"/>
<child link="chassis"/>
</joint>

mybot_world.launch by adding the following two tags in the launch tag:

<!-- urdf xml robot description loaded on the Parameter Server, converting the xacro into a proper urdf file-->
<param name="robot_description" command="$(find xacro)/xacro.py '$(find mybot_description)/urdf/mybot.xacro'" /> <!-- push robot_description to factory and spawn robot in gazebo -->
<node name="mybot_spawn" pkg="gazebo_ros" type="spawn_model" output="screen"
args="-urdf -param robot_description -model mybot" />

make a test

 roslaunch mybot_gazebo mybot_world.launch

mybot.xacro As a next step we add a caster wheel to the robot. This is the simplest wheel as we have no axis and no friction

<joint name="fixed" type="fixed">
<parent link="chassis"/>
<child link="caster_wheel"/>
</joint> <link name="caster_wheel">
<collision>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<geometry>
<sphere radius="${casterRadius}"/>
</geometry>
</collision> <visual>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<geometry>
<sphere radius="${casterRadius}"/>
</geometry>
<material name="red"/>
</visual> <inertial>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<mass value="${casterMass}"/>
<sphere_inertia m="${casterMass}" r="${casterRadius}"/>
</inertial>
</link>

mybot.gazebo Add a gazebo tag in the gazebo file for this link :

<gazebo reference="caster_wheel">
<mu1>0.0</mu1>
<mu2>0.0</mu2>
<material>Gazebo/Red</material>
</gazebo>

As usual, we specify the color used in material. We also added mu1 and mu2, with value 0 to remove the friction.

macros.xacro .We could add the two links in the main file, but let's make one macro to make it simple.

<macro name="wheel" params="lr tY">

<link name="${lr}_wheel">
<collision>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<geometry>
<cylinder length="${wheelWidth}" radius="${wheelRadius}"/>
</geometry>
</collision> <visual>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<geometry>
<cylinder length="${wheelWidth}" radius="${wheelRadius}"/>
</geometry>
<material name="black"/>
</visual> <inertial>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<mass value="${wheelMass}"/>
<cylinder_inertia m="${wheelMass}" r="${wheelRadius}" h="${wheelWidth}"/>
</inertial>
</link> <gazebo reference="${lr}_wheel">
<mu1 value="1.0"/>
<mu2 value="1.0"/>
<kp value="10000000.0" />
<kd value="1.0" />
<fdir1 value="1 0 0"/>
<material>Gazebo/Black</material>
</gazebo> <joint name="${lr}_wheel_hinge" type="continuous">
<parent link="chassis"/>
<child link="${lr}_wheel"/>
<origin xyz="${-wheelPos+chassisLength/2} ${tY*wheelWidth/2+tY*chassisWidth/2} ${wheelRadius}" rpy="0 0 0" />
<axis xyz="0 1 0" rpy="0 0 0" />
<limit effort="100" velocity="100"/>
<joint_properties damping="0.0" friction="0.0"/>
</joint> <transmission name="${lr}_trans">
<type>transmission_interface/SimpleTransmission</type>
<joint name="${lr}_wheel_hinge">
<hardwareInterface>EffortJointInterface</hardwareInterface>
</joint>
<actuator name="${lr}Motor">
<hardwareInterface>EffortJointInterface</hardwareInterface>
<mechanicalReduction>10</mechanicalReduction>
</actuator>
</transmission> </macro>

mybot.xacro

<wheel lr="left" tY="1"/>
<wheel lr="right" tY="-1"/>

Connect your robot to ROS

Alright, our robot is all nice and has this new car smell, but we can't do anything with it yet as it has no connection with

ROS In order to add this connection we need to add gazebeo plugins to our model. There are different kinds of plugins:

  • World: Dynamic changes to the world, e.g. Physics, like illumination or gravity, inserting models
  • Model: Manipulation of models (robots), e.g. move the robots
  • Sensor: Feedback from virtual sensor, like camera, laser scanner
  • System: Plugins that are loaded by the GUI, like saving images

First of all we'll use a plugin to provide access to the joints of the wheels. The transmission tags in our URDF will be used by this plugin the define how to link the joints to controllers. To activate the plugin, add the following to mybot.gazebo:

<gazebo>
<plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
<robotNamespace>/mybot</robotNamespace>
</plugin>
</gazebo>

With this plugin, we will be able to control the joints, however we need to provide some extra configuration and explicitely

start controllers for the joints. In order to do so, we'll use the package mybot_control that we have defined before. Let's first create the configuration file:

roscd mybot_control
mkdir config
cd config
vim mybot_control.yaml

This file will define three controllers: one for each wheel, connections to the joint by the transmission tag, one for

publishing the joint states. It also defined the PID gains to use for this controller:

mybot:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 50 # Effort Controllers ---------------------------------------
leftWheel_effort_controller:
type: effort_controllers/JointEffortController
joint: left_wheel_hinge
pid: {p: 100.0, i: 0.1, d: 10.0}
rightWheel_effort_controller:
type: effort_controllers/JointEffortController
joint: right_wheel_hinge
pid: {p: 100.0, i: 0.1, d: 10.0}

Now we need to create a launch file to start the controllers. For this let's do:

roscd mybot_control
mkdir launch
cd launch
vim mybot_control.launch

In this file we'll put two things. First we'll load the configuration and the controllers, and we'll also start a node that will

provide 3D transforms (tf) of our robot. This is not mandatory but that makes the simulation more complete

<launch>

  <!-- Load joint controller configurations from YAML file to parameter server -->
<rosparam file="$(find mybot_control)/config/mybot_control.yaml" command="load"/> <!-- load the controllers -->
<node name="controller_spawner"
pkg="controller_manager"
type="spawner" respawn="false"
output="screen" ns="/mybot"
args="joint_state_controller
rightWheel_effort_controller
leftWheel_effort_controller"/> <!-- convert joint states to TF transforms for rviz, etc -->
<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" respawn="false" output="screen">
<param name="robot_description" command="$(find xacro)/xacro.py '$(find mybot_description)/urdf/mybot.xacro'" />
<remap from="/joint_states" to="/mybot/joint_states" />
</node> </launch>

make a test

roslaunch mybot_gazebo mybot_world.launch
roslaunch mybot_control mybot.launch
rostopic list

We could launch our model on gazebo and then launch the controller, but to save some time (and terminals), we'll start the controllers automatically by adding a line to the mybot_world.launch in the mybot_gazebo package :

<!-- ros_control mybot launch file -->
<include file="$(find mybot_control)/launch/mybot_control.launch" />
rostopic pub -1 /mybot/leftWheel_effort_controller/command std_msgs/Float64 "data: 1.5"
rostopic pub -1 /mybot/rightWheel_effort_controller/command std_msgs/Float64 "data: 1.0"
rostopic echo /mybot/joint_states

Teleoperation of your robot

Adding a camera

	<joint name="camera_joint" type="fixed">
<axis xyz="0 1 0" />
<origin xyz="0 0 0.2" rpy="0 0 0"/>
<parent link="footprint"/>
<child link="camera"/>
</joint> <link name="camera">
<collision>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<box size="${cameraSize} ${cameraSize} ${cameraSize}"/>
</geometry>
</collision> <visual>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<box size="${cameraSize} ${cameraSize} ${cameraSize}"/>
</geometry>
<material name="blue"/>
</visual> <inertial>
<mass value="${cameraMass}" />
<origin xyz="0 0 0" rpy="0 0 0"/>
<box_inertia m="${cameraMass}" x="${cameraSize}" y="${cameraSize}" z="${cameraSize}" />
</inertial>
</link>

Add the plugin to gazebo file

<gazebo reference="camera">
<material>Gazebo/Blue</material>
<sensor type="camera" name="camera1">
<update_rate>30.0</update_rate>
<camera name="head">
<horizontal_fov>1.3962634</horizontal_fov>
<image>
<width>800</width>
<height>800</height>
<format>R8G8B8</format>
</image>
<clip>
<near>0.02</near>
<far>300</far>
</clip>
</camera>
<plugin name="camera_controller" filename="libgazebo_ros_camera.so">
<alwaysOn>true</alwaysOn>
<updateRate>0.0</updateRate>
<cameraName>mybot/camera1</cameraName>
<imageTopicName>image_raw</imageTopicName>
<cameraInfoTopicName>camera_info</cameraInfoTopicName>
<frameName>camera_link</frameName>
<hackBaseline>0.07</hackBaseline>
<distortionK1>0.0</distortionK1>
<distortionK2>0.0</distortionK2>
<distortionK3>0.0</distortionK3>
<distortionT1>0.0</distortionT1>
<distortionT2>0.0</distortionT2>
</plugin>
</sensor>
</gazebo>
rosrun image_view image_view image:=/mybot/camera1/image_raw

Visualisation with RViz

rosrun rviz rviz

整个代码框架如下:

Gazebo Ros入门的更多相关文章

  1. SLAM+语音机器人DIY系列:(二)ROS入门——1.ROS是什么

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  2. ROS入门学习

    ROS学习笔记 ROS入门网站; ROS入门书籍 ROS主要包含包括功能包.节点.话题.消息类型和服务; ROS功能包/软件包(Packages) ROS软件包是一组用于实现特定功能的相关文件的集合, ...

  3. ROS_Kinetic_03 ROS入门向导

    ROS_Kinetic_03 ROS入门向导 每个人都有不同的学习习惯和爱好并针对不同的应用进行ROS相关设计与开发, 没有固定不变的学习模式,但以下的内容是通常都会用到的. 1. ROS基础教程 1 ...

  4. SLAM+语音机器人DIY系列:(二)ROS入门——2.ROS系统整体架构

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  5. SLAM+语音机器人DIY系列:(二)ROS入门——3.在ubuntu16.04中安装ROS kinetic

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  6. SLAM+语音机器人DIY系列:(二)ROS入门——4.如何编写ROS的第一个程序hello_world

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  7. SLAM+语音机器人DIY系列:(二)ROS入门——5.编写简单的消息发布器和订阅器

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  8. SLAM+语音机器人DIY系列:(二)ROS入门——6.编写简单的service和client

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  9. SLAM+语音机器人DIY系列:(二)ROS入门——7.理解tf的原理

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

随机推荐

  1. Linux 学习笔记 查看文件内容诸多命令

    查看文件内容 1.查看文件统计信息 stat 提供文件系统上某个文件的所有状态信息 2.查看文件类型 file 用来查看文件类型 (该命令将文件分成3类:文本类型:可执行文件:数据文件) 如果你有从未 ...

  2. 用 UIViewPropertyAnimator 编写动画

    [iOS 10 day by day] Day 1:开发 iMessage 的第三方插件 [iOS 10 day by day] Day 2:线程竞态检测工具 Thread Sanitizer < ...

  3. Java设计模式15:常用设计模式之享元模式(结构型模式)

    1. Java之享元模式(Flyweight Pattern) (1)概述:       享元模式是对象池的一种实现,英文名为"Flyweight",代表轻量级的意思.享元模式用来 ...

  4. Windows Azure 微软公有云体验(三) IIS中文编码解决方案

    Windows Azure 微软公有云已经登陆中国有一段时间了,现在是处于试用阶段,Windows Azure的使用将会给管理信息系统的开发.运行.维护带来什么样的新体验呢? Windows Azur ...

  5. obj 转为Json 时间格式自定义

    var tb = evnWarningBll.GatWarning();             var  timeFormat = new IsoDateTimeConverter();       ...

  6. Class类中getMethods() 与getDeclaredMethods() 方法的区别

    一:jdk API中关于两个方法的解释 1:getMethods(),该方法是获取本类以及父类或者父接口中所有的公共方法(public修饰符修饰的) 2:getDeclaredMethods(),该方 ...

  7. [BigData]关于Hadoop学习笔记第四天(PPT总结)(一)

    课程安排 Partitioner编程** 自定义排序编程** Combiner编程** 常见的MapReduce算法** ---------------------------加深拓展-------- ...

  8. 关于Linux的总结(三)

    1.man_page.txt 1.内部命令:echo 查看内部命令帮助:help echo 或者 man echo 2.外部命令:ls 查看外部命令帮助:ls --help 或者 man ls 或者 ...

  9. Ubuntu升级显卡驱动后开机无动画的解决办法

    我的联想Ideapad z460,Nvidia GEFORCE 310M的显卡,安装闭源的驱动非常的蛋疼,ubuntu下面有附加驱动管理,在里面直接就能安装,也可以到官网下载.run的安装包,比较的折 ...

  10. win8.1恢复win7 CTRL+Space切换输入法

    win8用起来还是有很多好用的东西的,但是最让我受不了的就是输入法的切换,可以说是丧心病狂!!!折磨了我好久,今天终于找到了解决的办法! 那就是这位博客园的哥们给出的方案! http://www.cn ...