教程代码

First step with gazebo and ros

• setup a ROS workspace

• create projects for your simulated robot

• create a Gazebo world

• create your own robot model

• connect your robot model to ROS

• use a teleoperation node to control your robot

• add a camera to your robot

• use Rviz to vizualize all the robot information

Setup a new workspace

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
catkin_init_workspace
cd ..
catkin_make
source ~/catkin_ws/devel/setup.bash

Create projects for your simulated robot

cd ~/catkin_ws/src
catkin_create_pkg mybot_gazebo gazebo_ros
catkin_create_pkg mybot_description
catkin_create_pkg mybot_control

Creating your own World

roscd mybot_gazebo
mkdir launch worlds
cd worlds
vim mybot.world

A basic world file defines at least a name:

<?xml version="1.0"?>
<sdf version="1.4">
<world name="myworld">
</world>
</sdf>

At first we just want to add some basic objects, like a ground and a basic illumination source inside the world tag.

<include>
<uri>model://sun</uri>
</include> <include>
<uri>model://ground_plane</uri>
</include> <include>
<uri>model://turtlebot</uri>
</include>
roscd mybot_gazebo/launch
vim mybot_world.launch

mybot_world.launch

<launch>
<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value="$(find mybot_gazebo)/worlds/mybot.world"/>
<arg name="gui" value="true"/>
</include>
</launch>

make a test

roslaunch mybot_gazebo mybot_world.launch

Creating your own Model

roscd mybot_description
mkdir urdf
cd urdf
gedit mybot.xacro
XACRO CONCEPTS

• xacro:include: Import the content from other file. We can divide the content in different xacros and merge them using xacro:include.

• property: Useful to define constant values. Use it later using ${property_name}

• xacro:macro: Macro with variable values. Later, we can use this macro from another xacro file, and we specify the required value for the variables. To use a macro, you have to include the file where the macro is, and call it using the macro's name and filling

the required values.

mybot.xacro

This file will be the main description of our robot. Let's put some xacro basic structure:

<?xml version="1.0"?>
<robot name="mybot" xmlns:xacro="http://www.ros.org/wiki/xacro">
<!-- Put here the robot description -->
</robot>

Let's define some physical properties for our robot, mainly the dimensions of the chassis, the caster wheel, the wheels and the camera:

<xacro:property name="PI" value="3.1415926535897931"/>

<xacro:property name="chassisHeight" value="0.1"/>
<xacro:property name="chassisLength" value="0.4"/>
<xacro:property name="chassisWidth" value="0.2"/>
<xacro:property name="chassisMass" value="50"/> <xacro:property name="casterRadius" value="0.05"/>
<xacro:property name="casterMass" value="5"/> <xacro:property name="wheelWidth" value="0.05"/>
<xacro:property name="wheelRadius" value="0.1"/>
<xacro:property name="wheelPos" value="0.2"/>
<xacro:property name="wheelMass" value="5"/> <xacro:property name="cameraSize" value="0.05"/>
<xacro:property name="cameraMass" value="0.1"/>

We will also include three files :

 <xacro:include filename="$(find mybot_description)/urdf/mybot.gazebo" />
<xacro:include filename="$(find mybot_description)/urdf/materials.xacro" />
<xacro:include filename="$(find mybot_description)/urdf/macros.xacro" />

These three correspond respectively to:

• all the gazebo-specific aspects of our robot

• definition of the materials used (mostly colors)

• definitions of some macros for easier description of the robot

Add it to mybot.xacro

<link name='chassis'>
<collision>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<geometry>
<box size="${chassisLength} ${chassisWidth} ${chassisHeight}"/>
</geometry>
</collision>
<visual>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<geometry>
<box size="${chassisLength} ${chassisWidth} ${chassisHeight}"/>
</geometry>
<material name="orange"/>
</visual>
<inertial>
<origin xyz="0 0 ${wheelRadius}" rpy="0 0 0"/>
<mass value="${chassisMass}"/>
<box_inertia m="${chassisMass}" x="${chassisLength}" y="${chassisWidth}" z="${chassisHeight}"/>
</inertial>
</link>

Add it to mybot.gazebo

<gazebo reference="chassis">
<material>Gazebo/Orange</material>
</gazebo>

Add this in the “materials.xacro” :

<?xml version="1.0"?>
<robot>
<material name="black">
<color rgba="0.0 0.0 0.0 1.0"/>
</material> <material name="blue">
<color rgba="0.0 0.0 0.8 1.0"/>
</material> <material name="green">
<color rgba="0.0 0.8 0.0 1.0"/>
</material> <material name="grey">
<color rgba="0.2 0.2 0.2 1.0"/>
</material> <material name="orange">
<color rgba="${255/255} ${108/255} ${10/255} 1.0"/>
</material> <material name="brown">
<color rgba="${222/255} ${207/255} ${195/255} 1.0"/>
</material> <material name="red">
<color rgba="0.8 0.0 0.0 1.0"/>
</material> <material name="white">
<color rgba="1.0 1.0 1.0 1.0"/>
</material>
</robot>

Add this in the macros.xacro file, within the robot tag

<?xml version="1.0" ?>
<robot name="mybot" xmlns:xacro="http://www.ros.org/wiki/xacro"> <macro name="cylinder_inertia" params="m r h">
<inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"
iyy="${m*(3*r*r+h*h)/12}" iyz = "0"
izz="${m*r*r/2}"
/>
</macro> <macro name="box_inertia" params="m x y z">
<inertia ixx="${m*(y*y+z*z)/12}" ixy = "0" ixz = "0"
iyy="${m*(x*x+z*z)/12}" iyz = "0"
izz="${m*(x*x+z*z)/12}"
/>
</macro> <macro name="sphere_inertia" params="m r">
<inertia ixx="${2*m*r*r/5}" ixy = "0" ixz = "0"
iyy="${2*m*r*r/5}" iyz = "0"
izz="${2*m*r*r/5}"
/>
</macro> </robot>

Add this before the chassis link in the mybot.xacro file :

<link name="footprint" />

<joint name="base_joint" type="fixed">
<parent link="footprint"/>
<child link="chassis"/>
</joint>

mybot_world.launch by adding the following two tags in the launch tag:

<!-- urdf xml robot description loaded on the Parameter Server, converting the xacro into a proper urdf file-->
<param name="robot_description" command="$(find xacro)/xacro.py '$(find mybot_description)/urdf/mybot.xacro'" /> <!-- push robot_description to factory and spawn robot in gazebo -->
<node name="mybot_spawn" pkg="gazebo_ros" type="spawn_model" output="screen"
args="-urdf -param robot_description -model mybot" />

make a test

 roslaunch mybot_gazebo mybot_world.launch

mybot.xacro As a next step we add a caster wheel to the robot. This is the simplest wheel as we have no axis and no friction

<joint name="fixed" type="fixed">
<parent link="chassis"/>
<child link="caster_wheel"/>
</joint> <link name="caster_wheel">
<collision>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<geometry>
<sphere radius="${casterRadius}"/>
</geometry>
</collision> <visual>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<geometry>
<sphere radius="${casterRadius}"/>
</geometry>
<material name="red"/>
</visual> <inertial>
<origin xyz="${casterRadius-chassisLength/2} 0 ${casterRadius-chassisHeight+wheelRadius}" rpy="0 0 0"/>
<mass value="${casterMass}"/>
<sphere_inertia m="${casterMass}" r="${casterRadius}"/>
</inertial>
</link>

mybot.gazebo Add a gazebo tag in the gazebo file for this link :

<gazebo reference="caster_wheel">
<mu1>0.0</mu1>
<mu2>0.0</mu2>
<material>Gazebo/Red</material>
</gazebo>

As usual, we specify the color used in material. We also added mu1 and mu2, with value 0 to remove the friction.

macros.xacro .We could add the two links in the main file, but let's make one macro to make it simple.

<macro name="wheel" params="lr tY">

<link name="${lr}_wheel">
<collision>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<geometry>
<cylinder length="${wheelWidth}" radius="${wheelRadius}"/>
</geometry>
</collision> <visual>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<geometry>
<cylinder length="${wheelWidth}" radius="${wheelRadius}"/>
</geometry>
<material name="black"/>
</visual> <inertial>
<origin xyz="0 0 0" rpy="0 ${PI/2} ${PI/2}" />
<mass value="${wheelMass}"/>
<cylinder_inertia m="${wheelMass}" r="${wheelRadius}" h="${wheelWidth}"/>
</inertial>
</link> <gazebo reference="${lr}_wheel">
<mu1 value="1.0"/>
<mu2 value="1.0"/>
<kp value="10000000.0" />
<kd value="1.0" />
<fdir1 value="1 0 0"/>
<material>Gazebo/Black</material>
</gazebo> <joint name="${lr}_wheel_hinge" type="continuous">
<parent link="chassis"/>
<child link="${lr}_wheel"/>
<origin xyz="${-wheelPos+chassisLength/2} ${tY*wheelWidth/2+tY*chassisWidth/2} ${wheelRadius}" rpy="0 0 0" />
<axis xyz="0 1 0" rpy="0 0 0" />
<limit effort="100" velocity="100"/>
<joint_properties damping="0.0" friction="0.0"/>
</joint> <transmission name="${lr}_trans">
<type>transmission_interface/SimpleTransmission</type>
<joint name="${lr}_wheel_hinge">
<hardwareInterface>EffortJointInterface</hardwareInterface>
</joint>
<actuator name="${lr}Motor">
<hardwareInterface>EffortJointInterface</hardwareInterface>
<mechanicalReduction>10</mechanicalReduction>
</actuator>
</transmission> </macro>

mybot.xacro

<wheel lr="left" tY="1"/>
<wheel lr="right" tY="-1"/>

Connect your robot to ROS

Alright, our robot is all nice and has this new car smell, but we can't do anything with it yet as it has no connection with

ROS In order to add this connection we need to add gazebeo plugins to our model. There are different kinds of plugins:

  • World: Dynamic changes to the world, e.g. Physics, like illumination or gravity, inserting models
  • Model: Manipulation of models (robots), e.g. move the robots
  • Sensor: Feedback from virtual sensor, like camera, laser scanner
  • System: Plugins that are loaded by the GUI, like saving images

First of all we'll use a plugin to provide access to the joints of the wheels. The transmission tags in our URDF will be used by this plugin the define how to link the joints to controllers. To activate the plugin, add the following to mybot.gazebo:

<gazebo>
<plugin name="gazebo_ros_control" filename="libgazebo_ros_control.so">
<robotNamespace>/mybot</robotNamespace>
</plugin>
</gazebo>

With this plugin, we will be able to control the joints, however we need to provide some extra configuration and explicitely

start controllers for the joints. In order to do so, we'll use the package mybot_control that we have defined before. Let's first create the configuration file:

roscd mybot_control
mkdir config
cd config
vim mybot_control.yaml

This file will define three controllers: one for each wheel, connections to the joint by the transmission tag, one for

publishing the joint states. It also defined the PID gains to use for this controller:

mybot:
# Publish all joint states -----------------------------------
joint_state_controller:
type: joint_state_controller/JointStateController
publish_rate: 50 # Effort Controllers ---------------------------------------
leftWheel_effort_controller:
type: effort_controllers/JointEffortController
joint: left_wheel_hinge
pid: {p: 100.0, i: 0.1, d: 10.0}
rightWheel_effort_controller:
type: effort_controllers/JointEffortController
joint: right_wheel_hinge
pid: {p: 100.0, i: 0.1, d: 10.0}

Now we need to create a launch file to start the controllers. For this let's do:

roscd mybot_control
mkdir launch
cd launch
vim mybot_control.launch

In this file we'll put two things. First we'll load the configuration and the controllers, and we'll also start a node that will

provide 3D transforms (tf) of our robot. This is not mandatory but that makes the simulation more complete

<launch>

  <!-- Load joint controller configurations from YAML file to parameter server -->
<rosparam file="$(find mybot_control)/config/mybot_control.yaml" command="load"/> <!-- load the controllers -->
<node name="controller_spawner"
pkg="controller_manager"
type="spawner" respawn="false"
output="screen" ns="/mybot"
args="joint_state_controller
rightWheel_effort_controller
leftWheel_effort_controller"/> <!-- convert joint states to TF transforms for rviz, etc -->
<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher" respawn="false" output="screen">
<param name="robot_description" command="$(find xacro)/xacro.py '$(find mybot_description)/urdf/mybot.xacro'" />
<remap from="/joint_states" to="/mybot/joint_states" />
</node> </launch>

make a test

roslaunch mybot_gazebo mybot_world.launch
roslaunch mybot_control mybot.launch
rostopic list

We could launch our model on gazebo and then launch the controller, but to save some time (and terminals), we'll start the controllers automatically by adding a line to the mybot_world.launch in the mybot_gazebo package :

<!-- ros_control mybot launch file -->
<include file="$(find mybot_control)/launch/mybot_control.launch" />
rostopic pub -1 /mybot/leftWheel_effort_controller/command std_msgs/Float64 "data: 1.5"
rostopic pub -1 /mybot/rightWheel_effort_controller/command std_msgs/Float64 "data: 1.0"
rostopic echo /mybot/joint_states

Teleoperation of your robot

Adding a camera

	<joint name="camera_joint" type="fixed">
<axis xyz="0 1 0" />
<origin xyz="0 0 0.2" rpy="0 0 0"/>
<parent link="footprint"/>
<child link="camera"/>
</joint> <link name="camera">
<collision>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<box size="${cameraSize} ${cameraSize} ${cameraSize}"/>
</geometry>
</collision> <visual>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<box size="${cameraSize} ${cameraSize} ${cameraSize}"/>
</geometry>
<material name="blue"/>
</visual> <inertial>
<mass value="${cameraMass}" />
<origin xyz="0 0 0" rpy="0 0 0"/>
<box_inertia m="${cameraMass}" x="${cameraSize}" y="${cameraSize}" z="${cameraSize}" />
</inertial>
</link>

Add the plugin to gazebo file

<gazebo reference="camera">
<material>Gazebo/Blue</material>
<sensor type="camera" name="camera1">
<update_rate>30.0</update_rate>
<camera name="head">
<horizontal_fov>1.3962634</horizontal_fov>
<image>
<width>800</width>
<height>800</height>
<format>R8G8B8</format>
</image>
<clip>
<near>0.02</near>
<far>300</far>
</clip>
</camera>
<plugin name="camera_controller" filename="libgazebo_ros_camera.so">
<alwaysOn>true</alwaysOn>
<updateRate>0.0</updateRate>
<cameraName>mybot/camera1</cameraName>
<imageTopicName>image_raw</imageTopicName>
<cameraInfoTopicName>camera_info</cameraInfoTopicName>
<frameName>camera_link</frameName>
<hackBaseline>0.07</hackBaseline>
<distortionK1>0.0</distortionK1>
<distortionK2>0.0</distortionK2>
<distortionK3>0.0</distortionK3>
<distortionT1>0.0</distortionT1>
<distortionT2>0.0</distortionT2>
</plugin>
</sensor>
</gazebo>
rosrun image_view image_view image:=/mybot/camera1/image_raw

Visualisation with RViz

rosrun rviz rviz

整个代码框架如下:

Gazebo Ros入门的更多相关文章

  1. SLAM+语音机器人DIY系列:(二)ROS入门——1.ROS是什么

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  2. ROS入门学习

    ROS学习笔记 ROS入门网站; ROS入门书籍 ROS主要包含包括功能包.节点.话题.消息类型和服务; ROS功能包/软件包(Packages) ROS软件包是一组用于实现特定功能的相关文件的集合, ...

  3. ROS_Kinetic_03 ROS入门向导

    ROS_Kinetic_03 ROS入门向导 每个人都有不同的学习习惯和爱好并针对不同的应用进行ROS相关设计与开发, 没有固定不变的学习模式,但以下的内容是通常都会用到的. 1. ROS基础教程 1 ...

  4. SLAM+语音机器人DIY系列:(二)ROS入门——2.ROS系统整体架构

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  5. SLAM+语音机器人DIY系列:(二)ROS入门——3.在ubuntu16.04中安装ROS kinetic

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  6. SLAM+语音机器人DIY系列:(二)ROS入门——4.如何编写ROS的第一个程序hello_world

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  7. SLAM+语音机器人DIY系列:(二)ROS入门——5.编写简单的消息发布器和订阅器

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  8. SLAM+语音机器人DIY系列:(二)ROS入门——6.编写简单的service和client

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  9. SLAM+语音机器人DIY系列:(二)ROS入门——7.理解tf的原理

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

随机推荐

  1. selenium python 环境搭建(64位 windows)

    之前写了同样的文章,可是后来自己按照给文章再次搭建环境当搭建环境成功后却发现还是无法用.使用from selenium import webdriver,在run的时候却出现ImportError: ...

  2. ASP.NET 之 网页快照 (DrawToBitmap)

    一.添加引用 在解决方案上单击右键,选择“Add Reference...”,添加“System.Windows.Forms”,添加完后,Web.Config 中应该有类似下面的内容: <sys ...

  3. gitlab备份与恢复操作方法

    github私有仓库是收费的,有些代码不方便托管到外面的git仓库,因此就产生了自己搭建git服务器的需求. 好在有广大的开源人士的贡献,有了gitlab这一神器. 手动配置较多,直接用集成包: bi ...

  4. CSS skills: 2) change hover dynamically by js

    //命名空间 var base = {}; //class base.gClass={}; //鼠标hover交互方法: 注册对象的hover的class特性以及mouseMoveIn,mouseMo ...

  5. javaweb学习总结二十三(servlet开发之线程安全问题)

    一:servlet线程安全问题发生的条件 如果多个客户端访问同一个servlet时,发生线程安全问题,那么它们访问的是相同的资源.如果访问 的不是相同资源,则不存在线程安全问题. 实例1:不会产生线程 ...

  6. 关于js判断鼠标移入元素的方向——上下左右

    一开始我是这么想的,将待移入的元素分割四块,用mousemove获取第一次鼠标落入的区域来判断鼠标是从哪个方向进去的. 所以只要写个算法来判断鼠标的值落入该元素的区域就可以得出鼠标移入的方向,如下图: ...

  7. MapReduce按照两个字段对数据进行排序

    按照k2排序,要求k2必须是可以比较的,即必须实现WritableComparable接口. 但是如果还想让别的字段(比如v2中的一些字段)参与排序怎么办? 需要重新定义k2....把需要参与排序的字 ...

  8. [改善Java代码]推荐使用String直接量赋值

    建议52:推荐使用String直接量赋值 一.建议 String对象的生成方式有两种: 1.通过new关键字生成,String str3 = new String(“中国”); 2.直接声明,如:St ...

  9. 限制特定ip访问oracle

    在9i中真正起作用的是sqlnet.ora文件,我们修改sqlnet.ora其实是最好最快的方法. 在sqlnet.ora中增加如下部分 ----------------------------- # ...

  10. Socket编程初探

    一.什么是Socket? 通常也称作"套接字",用于描述IP地址和端口,是一个通信链的句柄.在Internet上的主机一般运行了多个服务软件,同时提供几种服务.每种服务都打开一个S ...