BZOJ 2705: [SDOI2012]Longge的问题 GCD
2705: [SDOI2012]Longge的问题
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://www.lydsy.com/JudgeOnline/problem.php?id=2705
Description
Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N)。
Input
一个整数,为N。
Output
一个整数,为所求的答案。
Sample Input
6
Sample Output
15
HINT
题意
题解:
题解:http://hzwer.com/3470.html
题目中要求出∑gcd(i,N)(1<=i<=N)。
枚举n的约数k,令s(k)为满足gcd(m,n)=k,(1<=m<=n)m的个数,则ans=sigma(k*s(k)) (k为n的约数)
因为gcd(m,n)=k,所以gcd(m/k,n/k)=1,于是s(k)=euler(n/k)
phi可以在根号的时间内求出
代码:
//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 200051
#define mod 10007
#define eps 1e-9
int Num;
//const int inf=0x7fffffff; //нчоч╢С
const int inf=0x3f3f3f3f;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//************************************************************************************** ll n;
int m;
ll phi(ll x)
{
ll t=x;
for(ll i=;i<=m;i++)
{
if(x%i==)
{
t=t/i*(i-);
while(x%i==)x/=i;
}
}
if(x>)t=t/x*(x-);
return t;
}
int main()
{
cin>>n;
ll ans=;
m = sqrt(n);
for(int i=;i<=sqrt(n);i++)
{
if(n%i==)
{
ans+=i*phi(n/i);
if(i*i<n)
ans+=(ll)(n/i)*phi(i);
}
}
cout<<ans<<endl;
}
BZOJ 2705: [SDOI2012]Longge的问题 GCD的更多相关文章
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
- bzoj 2705: [SDOI2012]Longge的问题 歐拉函數
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1035 Solved: 669[Submit][S ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题( 数论 )
T了一版....是因为我找质因数的姿势不对... 考虑n的每个因数对答案的贡献. 答案就是 ∑ d * phi(n / d) (d | n) 直接枚举n的因数然后求phi就行了. 但是我们可以做的更好 ...
- [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...
- bzoj 2705: [SDOI2012]Longge的问题——欧拉定理
Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...
- BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...
- [bzoj 2705][SDOI2012]Longge的问题(数学)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2705 分析: 设k为n的因数 设f[k]为gcd(x,n)==k的x的个数,容易知道a ...
随机推荐
- 【转】第一次使用Android Studio时你应该知道的一切配置(三):gradle项目构建
原文网址:http://www.cnblogs.com/smyhvae/p/4456420.html [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.c ...
- asp.net夜话之十一:web.config详解
转:http://blog.csdn.net/zhoufoxcn/article/details/3265141 在开发中经常会遇到这样的情况,在部署程序时为了保密起见并不将源代码随项目一同发布,而我 ...
- Redis Sentinel机制与用法
概述 Redis-Sentinel是Redis官方推荐的高可用性(HA)解决方案,当用Redis做Master-slave的高可用方案时,假如master宕机了,Redis本身(包括它的很多客户端)都 ...
- PHP 获取远程文件的大小的3种方法
1.使用file_get_contents() <?php $file = file_get_contents($url); echo strlen($file); ?> 2. 使用get ...
- 分享一个Web弹框类
using System; using System.Text; namespace Core { /// <summary> /// MessageBox 的摘要说明. /// < ...
- 【数据结构和算法】 O(1)时间取得栈中的最大 / 最小元素值
常数时间取得栈中的元素最大值和最小值,我们可以想到当push的时候比较一下,如果待push元素值小于栈顶元素,则更新min值,最大值亦然. 这样有个问题就是当pop的时候,就没了最大最小值. 于是上网 ...
- 宏定义(#define)和常量(const)的区别
最近开始准备一边做实验室的研究,一边记录一些遇到的编程中的小知识点.今天在测试对矩阵进行SVD分解时,需要定义矩阵的行和列的大小,我习惯性的用宏定义来定义了这两个变量,在运行的时候,就开始思考宏定义和 ...
- MFC学习知识点20160715
1. sizeof() :返回所查询目标所占用字节数 _countof() :返回所查询目标所含有元素个数 _countof 是 C++中计算一个固定大小数组长度的宏,比如: T arr[10] ...
- [Hive - LanguageManual] Hive Concurrency Model (待)
Hive Concurrency Model Hive Concurrency Model Use Cases Turn Off Concurrency Debugging Configuration ...
- HttpComponents 学习的两个重要文档
httpcore-tutorial-simplified-chinese httpclient-tutorial-simplified-chinese