Intersection
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 16322   Accepted: 4213

Description

You are to write a program that has to decide whether a given line segment intersects a given rectangle.

An example: 
line: start point: (4,9) 
end point: (11,2) 
rectangle: left-top: (1,5) 
right-bottom: (7,1)

 
Figure 1: Line segment does not intersect rectangle

The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.

Input

The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format: 
xstart ystart xend yend xleft ytop xright ybottom

where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.

Output

For each test case in the input file, the output file should contain a line consisting either of the letter "T" if the line segment intersects the rectangle or the letter "F" if the line segment does not intersect the rectangle.

Sample Input

1
4 9 11 2 1 5 7 1

Sample Output

F

Source

  • 题目的判断是否一条线段和矩形相交,可以想到直接判断给定线段是否和矩形的四条边相交即可,但是有一个问题,题目定义的矩形"The rectangle consists of four straight lines and the area in between",包括了其中的面积,就因为这个wa了几发Orz,我的等级还是不够啊。
  • 最后只要判断给定线段是否和矩形的四条边相交,以及线段是否在矩形内,线段是否在矩形内部可以用线段的端点是否在矩形内部来判断。
  •  #include<iostream>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    int n;
    double xs, ys, xe, ye, xl, yl, xr, yr;
    const double eps = 1.0e8;
    typedef struct point {
    double x;
    double y;
    point(double a, double b) {
    x = a;
    y = b;
    }
    point() { }
    }point;
    typedef struct edge {
    point start;
    point end;
    edge(point a, point b) {
    start = a;
    end = b;
    }
    edge() { }
    edge(edge &t) {
    start = t.start;
    end = t.end;
    }
    }edge;
    point t[];
    edge line;
    edge rec[]; inline double dabs(double a) { return a < ? -a : a; }
    inline double max(double a, double b) { return a > b ? a : b; }
    inline double min(double a, double b) { return a < b ? a : b; }
    double multi(point p1, point p2, point p0) {
    return (p2.y - p0.y)*(p1.x - p0.x) - (p2.x - p0.x)*(p1.y - p0.y);
    }
    bool Across(edge v1, edge v2) {
    if (max(v1.start.x, v1.end.x) >= min(v2.start.x, v2.end.x) &&
    max(v1.start.y, v1.end.y) >= min(v2.start.y, v2.end.y) &&
    max(v2.start.x, v2.end.x) >= min(v1.start.x, v1.end.x) &&
    max(v2.start.y, v2.end.y) >= min(v1.start.y, v1.end.y) &&
    multi(v2.start, v1.end, v1.start)*multi(v1.end, v2.end, v2.start) >= &&
    multi(v1.start, v2.end, v2.start)*multi(v2.end, v1.end, v1.start) >=
    )
    return true;
    return false;
    }
    int main(void) {
    while (cin >> n) {
    while (n-- > ) {
    int flag = ;
    cin >> xs >> ys >> xe >> ye >> xl >> yl >> xr >> yr;
    line = edge(point(xs, ys), point(xe, ye));
    t[] = point(xl, yl), t[] = point(xr, yl);
    t[] = point(xr, yr), t[] = point(xl, yr);
    for (int i = ; i < ; i++) {
    rec[i] = edge(t[i], t[(i + )%]);
    }
    for (int i = ; i < ; i++) {
    if (Across(line, rec[i]))
    {
    flag = ;
    break;
    }
    }
    if(line.start.x>=min(xl,xr)&&line.start.x<=max(xr,xl)&&line.start.y>=min(yl,yr)&&line.start.y<=max(yl,yr) ||
    line.end.x >= min(xl, xr) && line.end.x <= max(xr, xl) && line.end.y >= min(yl, yr) && line.end.y <= max(yl, yr))
    flag = ;//判断是否点在矩形内部
    if (flag == )
    cout << "T" << endl;
    else
    cout << "F" << endl;
    }
    }
    return ;
    }
 

POJ 1410--Intersection(判断线段和矩形相交)的更多相关文章

  1. poj 1410 Intersection (判断线段与矩形相交 判线段相交)

    题目链接 Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12040   Accepted: 312 ...

  2. POJ 1410 Intersection (线段和矩形相交)

    题目: Description You are to write a program that has to decide whether a given line segment intersect ...

  3. [POJ 1410] Intersection(线段与矩形交)

    题目链接:http://poj.org/problem?id=1410 Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  4. POJ 1410 Intersection(线段相交&amp;&amp;推断点在矩形内&amp;&amp;坑爹)

    Intersection 大意:给你一条线段,给你一个矩形,问是否相交. 相交:线段全然在矩形内部算相交:线段与矩形随意一条边不规范相交算相交. 思路:知道详细的相交规则之后题事实上是不难的,可是还有 ...

  5. 线段和矩形相交 POJ 1410

    // 线段和矩形相交 POJ 1410 // #include <bits/stdc++.h> #include <iostream> #include <cstdio& ...

  6. poj 1410 Intersection 线段相交

    题目链接 题意 判断线段和矩形是否有交点(矩形的范围是四条边及内部). 思路 判断线段和矩形的四条边有无交点 && 线段是否在矩形内. 注意第二个条件. Code #include & ...

  7. 判断线段和直线相交 POJ 3304

    // 判断线段和直线相交 POJ 3304 // 思路: // 如果存在一条直线和所有线段相交,那么平移该直线一定可以经过线段上任意两个点,并且和所有线段相交. #include <cstdio ...

  8. poj1410(判断线段和矩形是否相交)

    题目链接:https://vjudge.net/problem/POJ-1410 题意:判断线段和矩形是否相交. 思路:注意这里的相交包括线段在矩形内,因此先判断线段与矩形的边是否相交,再判断线段的两 ...

  9. Intersection--poj1410(判断线段与矩形的关系)

    http://poj.org/problem?id=1410 题目大意:给你一个线段和矩形的对角两点  如果相交就输出'T'  不想交就是'F' 注意: 1,给的矩形有可能不是左上 右下  所以要先判 ...

随机推荐

  1. Python contextlib.contextmanager

    看着代码又发现了一个奇怪的东西: @contextlib.contextmanager def __call__(self, incoming): result_wrapper = [] yield ...

  2. 前端(三大框架、Bootstrap,jQuery,自整理)

    前端,HTML(超文本标记语言),CSS(层叠样式表)和JavaScript(脚本语言) HTML,通常说的h5,其实按标准来说,HTML4的后续版本不带编号了,并保证向前的兼容性 CSS的版本3,增 ...

  3. 概述File i/o

    1.File对象既可表示文件,也可表示目录(文件夹). 2. 创建一个File对象 File file = new File (String pathName[文件路径名]); 3.在Windows操 ...

  4. 让zepto支持ie

    找到zepto源码:修改为如下代码: zepto.Z = function(dom, selector) { dom = dom || [] // 支持ie10,主要是支持wp8 if(window. ...

  5. css box-shadow知识点及多重边框

    box-shadow() 参数: h-shadow:水平阴影的位置.允许负值. v-shadow:垂直阴影的位置.允许负值. blur:模糊距离. spread:扩张半径(可正可负.投影面积则可大可小 ...

  6. js for in 遍历对象与数组

    遍历对象 let obj = { q:'9', w:'5', e:'2', t:'7', c:'3' } //for in 遍历对象 key为对象的属性名称,遍历属性值时用[]操作符访问 //通过[] ...

  7. 节点nodeName与nodeValue表

  8. alpinelinux

    https://wiki.alpinelinux.org/wiki/Tutorials_and_Howtos https://nixos.org/nix/manual/#ch-installing-b ...

  9. Automapper 实现自动映射

    出于安全考虑,在后台与前台进行数据传输时,往往不会直接传输实体模型,而是使用Dto(Data transfer object 数据传输对象),这样在后台往前台传递数据时可以省略不必要的信息,只保留必要 ...

  10. collectd配置

    udp proxy - 192.168.48.112 cat > /etc/collectd_25801.conf << EOF Hostname "kvm-48-112& ...