洛谷P3177 [HAOI2015]树上染色(树上背包)
题意
Sol
比较套路吧,设\(f[i][j]\)表示以\(i\)为根的子树中选了\(j\)个黑点对答案的贡献
然后考虑每条边的贡献,边的两边的答案都是可以算出来的
转移的时候背包一下。
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define fi first
#define se second
#define MP(x, y) make_pair(x, y)
#define LL long long
const int MAXN = 2001, INF = 1e9 + 7;
using namespace std;
inline int read() {
int x = 0, f = 1; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, K, siz[MAXN];
LL f[MAXN][MAXN];
vector<Pair> v[MAXN];
void dfs(int x, int fa) {
siz[x] = 1; f[x][1] = f[x][0] = 0;
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i].fi, w = v[x][i].se;
if(to == fa) continue;
dfs(to, x);
siz[x] += siz[to];
}
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i].fi, w = v[x][i].se;
if(to == fa) continue;
for(int j = min(siz[x], K); j >= 0; j--)
for(int k = 0; k <= min(siz[to], j); k++)
if(f[x][j - k] >= 0)
f[x][j] = max(f[x][j], f[x][j - k] + f[to][k] + 1ll * k * (K - k) * w + 1ll * (siz[to] - k) * (N - (K - k) - siz[to]) * w);
}
}
main() {
N = read(); K = read();
for(int i = 1; i <= N - 1; i++) {
int x = read(), y = read(), w = read();
v[x].push_back(MP(y, w));
v[y].push_back(MP(x, w));
}
memset(f, -0x7f, sizeof(f));
dfs(1, 0);
cout << f[1][K];
return 0;
}
洛谷P3177 [HAOI2015]树上染色(树上背包)的更多相关文章
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- 洛谷 P3177 [HAOI2015]树上染色
题目链接 题目描述 有一棵点数为 \(N\) 的树,树边有边权.给你一个在 \(0~ N\) 之内的正整数 \(K\) ,你要在这棵树中选择 \(K\)个点,将其染成黑色,并将其他 的\(N-K\)个 ...
- 洛谷P3177 [HAOI2015]树上染色(树形dp)
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- 洛谷P3177||bzoj4033 [HAOI2015]树上染色
洛谷P3177 bzoj4033 根本不会做... 上网查了题解,发现只要在状态定义的时候就考虑每一条边全局的贡献就好了? 考虑边的贡献和修改状态定义我都想到了,然而并不能想到要结合起来 ans[i] ...
- 洛谷 P2015 二叉苹果树 (树上背包)
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...
- 洛谷 P2680 运输计划-二分+树上差分(边权覆盖)
P2680 运输计划 题目背景 公元 20442044 年,人类进入了宇宙纪元. 题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条 ...
- 洛谷 P1273 有线电视网(树形背包)
洛谷 P1273 有线电视网(树形背包) 干透一道题 题面:洛谷 P1273 本质就是个背包.这道题dp有点奇怪,最终答案并不是dp值,而是最后遍历寻找那个合法且最优的\(i\)作为答案.dp值存的是 ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- BZOJ4033或洛谷3177 [HAOI2015]树上染色
BZOJ原题链接 洛谷原题链接 很明显的树形\(DP\). 因为记录每个点的贡献很难,所以我们可以统计每条边的贡献. 对于每一条边,设边一侧的黑点有\(B_x\)个,白点有\(W_x\),另一侧黑点有 ...
随机推荐
- 1. C语言对文件的操作
1. 文件常见输入输出函数与屏幕.键盘输入输出函数的对比,如:fprintf.fscanf等. #define _CRT_SECURE_NO_WARNINGS #include <stdio.h ...
- jdbc.properties文件的配置
使用配置文件访问数据库的优点是: 一次编写随时调用,数据库类型发生变化只需要修改配置文件. 配置文件的设置: 在配置文件中,key-value对应的方式编写. 不好意思我只用过这两个数据库 :)--- ...
- WebApplicationContext wac=WebApplicationContextUtils.getWebApplicationContext(this.getServletContext());这句话的意思
在jsp中出现 提取的代码: <% WebApplicationContext wac = WebApplicationContextUtils .getWebApplication ...
- LOSKI,我
2019年入驻github以及博客园 在发现用github的issue写博客稍微有些奇怪后决定开辟这个更适合写博的空间 2019/4/1 目前大一,计算机专业,尚未分流 更多的时间花在了数据结构与算法 ...
- Flink学习笔记:Operators之Process Function
本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...
- PHP 生成随机数组
/** 生成指定个数,以及最小最大值随机数组(包括最大值) * @parem $min 随机数组最小值 * @parem $max 随机数组最大值 * @parem $num 随机数组个数,默认max ...
- 【算法笔记】B1011 A+B 和 C
1011 A+B 和 C (15 分) 给定区间 [−231,231] 内的 3 个整数 A.B 和 C,请判断 A+B 是否大于 C. 输入格式: 输入第 1 行给出正整数 T (≤10 ...
- 基于 Pymsql 数据库连接池
helper.py import pymysql from settings import Config def connect(): conn = Config.POOL.connection() ...
- Apache Shiro(六)-基于URL配置权限
数据库 先准备数据库啦. DROP DATABASE IF EXISTS shiro; CREATE DATABASE shiro DEFAULT CHARACTER SET utf8; USE sh ...
- node.js知识点提取
javascript是脚本语言,脚本语言都需要一个解析器才能运行.