题目链接:http://poj.org/problem?id=2976

Dropping tests

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 17838   Accepted: 6186

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

Source

题目概述:

N个物品,每个物品 i 有 a[ i ] 和 b[ i ] 两种属性,去掉K个物品,是的 Σai / Σbi 最大。

解题思路:

我们令 Σai / Σbi >= x, 然后二分x,而判断条件则移一下项得 Σai >= Σbi*x  → Σai - Σbi*x >= 0,因为我们要去掉 K 个小的, 取N-K个使结果最大化的,所以用 令 p[ i ] =  Σai - Σbi*x,对 p[ i ] 默认升序排序之后,第 K 到 N 个。判断这些数和是否满足不等式条件(大于等于0)

注意事项:

因为计算机的精度问题,要注意细节的处理,对浮点数的计算。(in代码)

AC code:

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#define INF 0x3f3f3f3f
#define ll long long int
using namespace std; const int MAXN = ;
int N, K;
int a[MAXN], b[MAXN];
double p[MAXN]; ///这里的p一定要是浮点型,因为本来就是计算分式 bool ok(double x)
{
for(int i = ; i <= N; i++)
{
p[i] = a[i]-b[i]*x;
}
sort(p+, p+N+);
double ans = ;
for(int j = N; j > K; j--)
{
ans+=p[j];
}
return ans>=;
} int main()
{
while(~scanf("%d%d", &N, &K) && N|K)
{
for(int i = ; i <= N; i++)
{
scanf("%d", &a[i]);
}
for(int i = ; i <= N; i++)
{
scanf("%d", &b[i]);
}
double l = , r = ;
while(r-l>1e-) //!!!这里不用0,是因为计算机精度问题,计算浮点数要保留一定误差,改成0会超时
{
double mid = (l+r)/2.0;
if(ok(mid)) l = mid;
else r = mid;
}
printf("%.0lf\n", l*);
}
return ;
}

POJ 2976 Dropping tests 【01分数规划+二分】的更多相关文章

  1. POJ - 2976 Dropping tests(01分数规划---二分(最大化平均值))

    题意:有n组ai和bi,要求去掉k组,使下式值最大. 分析: 1.此题是典型的01分数规划. 01分数规划:给定两个数组,a[i]表示选取i的可以得到的价值,b[i]表示选取i的代价.x[i]=1代表 ...

  2. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  3. POJ 2976 Dropping tests 01分数规划

    给出n(n<=1000)个考试的成绩ai和满分bi,要求去掉k个考试成绩,使得剩下的∑ai/∑bi*100最大并输出. 典型的01分数规划 要使∑ai/∑bi最大,不妨设ans=∑ai/∑bi, ...

  4. $POJ$2976 $Dropping\ tests$ 01分数规划+贪心

    正解:01分数规划 解题报告: 传送门! 板子题鸭,,, 显然考虑变成$a[i]-mid\cdot b[i]$,显然无脑贪心下得选出最大的$k$个然后判断是否大于0就好(,,,这么弱智真的算贪心嘛$T ...

  5. [poj 2976] Dropping tests (分数规划 二分)

    原题: 传送门 题意: 给出n个a和b,让选出n-k个使得(sigma a[i])/(sigma b[i])最大 直接用分数规划.. code: //By Menteur_Hxy #include & ...

  6. POJ 2976 Dropping tests(分数规划)

    http://poj.org/problem?id=2976 题意: 给出ai和bi,ai和bi是一一配对的,现在可以删除k对,使得的值最大. 思路: 分数规划题,可以参考<挑战程序竞赛> ...

  7. [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)

    题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...

  8. Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8176   Accepted: 2862 De ...

  9. POJ - 3111 K Best 0-1分数规划 二分

    K Best Time Limit: 8000MS   Memory Limit: 65536K Total Submissions: 12812   Accepted: 3290 Case Time ...

  10. POJ2976 Dropping tests —— 01分数规划 二分法

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

随机推荐

  1. Missing artifact com.oracle:ojdbc6:jar:11.2.0.1.0问题解决 ojdbc包pom.xml出错

    <!-- 添加oracle jdbc driver --> <dependency> <groupId>com.oracle</groupId> < ...

  2. pipline --学习 (-)

    一,语法: 编写位置: pipline 启动docker pipeline { agent { docker 'maven:3.3.3' } stages { stage('build') { ste ...

  3. HTML5之WebSocket && https://zhuanlan.zhihu.com/p/23467317

    在认识websocket之前,我们必须了解的是websocket有什么用? 他能解决我们遇到的什么问题? 如果没用,那么我们就么有使用它的必要的. websocket就是建立起全双工协议的,提高了效率 ...

  4. TimesTen客户端DSN配置

    打开控制面板\管理工具 1.打开数据源(ODBC) 2.选择系统DSN 3.选择添加: 4.单击完成 5.Servers

  5. JAVA 利用反射自定义数据层框架

    之前的随笔一直都在介绍c#,主要公司最近的业务都是做桌面程序,那么目前c#中的WPF肯定是我做桌面程序的不二之选,做了半年的WPF,也基本摸清了c#写代码的套路和规则(本人之前是两年多的JAVA开发者 ...

  6. maven pom.xml指定jdk

    <plugins> <!-- 指定jdk --> <plugin> <groupId>org.apache.maven.plugins</grou ...

  7. bnu 28890 &zoj 3689——Digging——————【要求物品次序的01背包】

    Digging Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on ZJU. Original ID: 36 ...

  8. nyoj 546——Divideing Jewels——————【dp、多重背包板子题】

    Divideing Jewels 时间限制:1000 ms  |  内存限制:65535 KB 难度:4   描述 Mary and Rose own a collection of jewells. ...

  9. JQuery选择器——《锋利的JQuery》

    刚学CSS的时候我们已经接触了选择器,其实就是按照一定的规则选择出来我们想要获取到的元素.在这里,既然选择了用jQuery选择器,首先来谈谈JQuery选择器的优势: 1.简洁的写法:$()函数在很多 ...

  10. Spring JdbcTemplate 使用总结

    1.查询Object public Classify queryClassifById(int id){ String sql="select * from t_classify where ...