CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning

http://mmlab.ie.cuhk.edu.hk/projects/RL-Restore/

强化学习的入门介绍:https://blog.csdn.net/aliceyangxi1987/article/details/73327378

https://www.zhihu.com/question/41775291

CNN在low-level的问题处理前沿:

deblurring:   S. Nah, T. H. Kim, and K. M. Lee. Deep multi-scale convolutional
neural network for dynamic scene deblurring. In
CVPR, 2017.

J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolutional
neural network for non-uniform motion blur removal.
In CVPR, 2015.

L. Xu, X. Tao, and J. Jia. Inverse kernels for fast spatial
deconvolution. In ECCV, 2014.

denoising:  

Y. Chen,W. Yu, and T. Pock. On learning optimized reaction
diffusion processes for effective image restoration. In CVPR,
2015.

S. Lefkimmiatis. Non-local color image denoising with convolutional
neural networks. In CVPR, 2017.

Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of
JPEG-compressed images. In CVPR, 2016.

JPEG artifacts reduction:  

C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression artifacts
reduction by a deep convolutional network. In ICCV,
2015.

J. Guo and H. Chao. Building dual-domain representations
for compression artifacts reduction. In ECCV, 2016.

Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of
JPEG-compressed images. In CVPR, 2016.

super-resolution:       

C. Dong, C. C. Loy, K. He, and X. Tang. Image superresolution
using deep convolutional networks. TPAMI,
38(2):295–307, 2016.

T.-W. Hui, C. C. Loy, and X. Tang. Depth map superresolution
by deep multi-scale guidance. In ECCV, 2016.

J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image superresolution
using very deep convolutional networks. In CVPR,
2016.

J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive
convolutional network for image super-resolution. In CVPR,
2016.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep
laplacian pyramid networks for fast and accurate superresolution.
In CVPR, 2017.

Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep
recursive residual network. In CVPR, 2017.

Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent
memory network for image restoration. In ICCV, 2017.

X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering realistic
texture in image super-resolution by deep spatial feature
transform. In CVPR, 2018.

PSNR:

详细解释,读下面的链接:

http://www.360doc.com/content/16/0919/12/496343_591970301.shtml

独热码,在英文文献中称做 one-hot code, 直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制,更加详细参加one_hot code(维基百科)。在机器学习中对于离散型的分类型的数据,需要对其进行数字化比如说性别这一属性,只能有男性或者女性或者其他这三种值,如何对这三个值进行数字化表达?一种简单的方式就是男性为0,女性为1,其他为2,这样做有什么问题?

 长短期记忆(Long-Short Term Memory, LSTM)是一种时间递归神经网络(RNN),论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

http://www.cnblogs.com/wangduo/p/6773601.html

CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning的更多相关文章

  1. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  2. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  3. Learning Roadmap of Deep Reinforcement Learning

    1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...

  4. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  5. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

  6. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  7. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  8. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  9. 论文笔记之:Deep Reinforcement Learning with Double Q-learning

    Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特 ...

随机推荐

  1. RESTful api 设计规范

    该仓库整理了目前比较流行的 RESTful api 设计规范,为了方便讨论规范带来的问题及争议,现把该文档托管于 Github,欢迎大家补充!! Table of Contents RESTful A ...

  2. MySQL9:索引实战 (转)

    构建50万条数据过程: DROP TABLE IF EXISTS `students`; CREATE TABLE `students` ( `s_id` ) NOT NULL AUTO_INCREM ...

  3. PHP读取Excel类文件

    想要使用PHP读取Excel文件必然要用到PHPExcel开源类库,网上资源应该挺多的.但是每一种的操作必然都是不同的,可原理应该都是大同小异. 这个文件夹里包含的就是PHPExcel类文件,在外面还 ...

  4. h5 简单拖放

    最新的HTML5标准为所有的html元素规定了一个draggable属性,它表明了元素是否可以拖动,默认情况下,图像,链接,选中的文字是可以拖动的,因为他们的draggable属性被自动设置为true ...

  5. swiper移动端日历-1

    先上图:    说明:这是基于移动端的,对于PC端浏览器支持不是很好(我测的结果是IE无效),另外这个swiper是4.x版本的 思路: 先引用css <link href="css/ ...

  6. js获取日期:昨天今天和明天、后天 [转贴记录]

    <html> <head> <meta http-equiv="Content-Type" content="textml; charset ...

  7. python单下划线、双下划线、头尾双下划线说明:

      单下划线.双下划线.头尾双下划线说明: __foo__: 定义的是特殊方法,一般是系统定义名字 ,类似 __init__() 之类的. _foo: 以单下划线开头的表示的是 protected 类 ...

  8. HandlerThread使用

    HandlerThread 是一个包含 Looper 的 Thread,我们可以直接使用这个 Looper 创建 Handler.  1.HandlerThread 源码 public class H ...

  9. Angular1.x directive(指令里的)的compile,pre-link,post-link,link,transclude

    The nitty-gritty of compile and link functions inside AngularJS directives  The nitty-gritty of comp ...

  10. Android根据URL下载文件保存到SD卡

    //下载具体操作 private void download() { try { URL url = new URL(downloadUrl); //打开连接 URLConnection conn = ...