CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning

http://mmlab.ie.cuhk.edu.hk/projects/RL-Restore/

强化学习的入门介绍:https://blog.csdn.net/aliceyangxi1987/article/details/73327378

https://www.zhihu.com/question/41775291

CNN在low-level的问题处理前沿:

deblurring:   S. Nah, T. H. Kim, and K. M. Lee. Deep multi-scale convolutional
neural network for dynamic scene deblurring. In
CVPR, 2017.

J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolutional
neural network for non-uniform motion blur removal.
In CVPR, 2015.

L. Xu, X. Tao, and J. Jia. Inverse kernels for fast spatial
deconvolution. In ECCV, 2014.

denoising:  

Y. Chen,W. Yu, and T. Pock. On learning optimized reaction
diffusion processes for effective image restoration. In CVPR,
2015.

S. Lefkimmiatis. Non-local color image denoising with convolutional
neural networks. In CVPR, 2017.

Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of
JPEG-compressed images. In CVPR, 2016.

JPEG artifacts reduction:  

C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression artifacts
reduction by a deep convolutional network. In ICCV,
2015.

J. Guo and H. Chao. Building dual-domain representations
for compression artifacts reduction. In ECCV, 2016.

Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of
JPEG-compressed images. In CVPR, 2016.

super-resolution:       

C. Dong, C. C. Loy, K. He, and X. Tang. Image superresolution
using deep convolutional networks. TPAMI,
38(2):295–307, 2016.

T.-W. Hui, C. C. Loy, and X. Tang. Depth map superresolution
by deep multi-scale guidance. In ECCV, 2016.

J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image superresolution
using very deep convolutional networks. In CVPR,
2016.

J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive
convolutional network for image super-resolution. In CVPR,
2016.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep
laplacian pyramid networks for fast and accurate superresolution.
In CVPR, 2017.

Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep
recursive residual network. In CVPR, 2017.

Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent
memory network for image restoration. In ICCV, 2017.

X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering realistic
texture in image super-resolution by deep spatial feature
transform. In CVPR, 2018.

PSNR:

详细解释,读下面的链接:

http://www.360doc.com/content/16/0919/12/496343_591970301.shtml

独热码,在英文文献中称做 one-hot code, 直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制,更加详细参加one_hot code(维基百科)。在机器学习中对于离散型的分类型的数据,需要对其进行数字化比如说性别这一属性,只能有男性或者女性或者其他这三种值,如何对这三个值进行数字化表达?一种简单的方式就是男性为0,女性为1,其他为2,这样做有什么问题?

 长短期记忆(Long-Short Term Memory, LSTM)是一种时间递归神经网络(RNN),论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

http://www.cnblogs.com/wangduo/p/6773601.html

CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning的更多相关文章

  1. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  2. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  3. Learning Roadmap of Deep Reinforcement Learning

    1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...

  4. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  5. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

  6. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  7. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  8. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  9. 论文笔记之:Deep Reinforcement Learning with Double Q-learning

    Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特 ...

随机推荐

  1. Java求一个数组中的最大值和最小值

    原创作品,转载请注明出处:https://www.cnblogs.com/sunshine5683/p/9927186.html 今天在工作中遇到对一个已知的一维数组取出其最大值和最小值,分别用于参与 ...

  2. 基于springMVC实现登录过滤器

    此文章是基于 搭建Jquery+SpringMVC+Spring+Hibernate+MySQL平台 一. 相关文件介绍 1. LoginFilter.java:登录过滤器,保证每次的url访问都对s ...

  3. UVA 455(最小周期)

    最小周期可以用%枚举 #include <iostream> #include <string> #include <cstring> #include <c ...

  4. MVC 事物同时保存,更新数据库

    本人小白一枚,第一次写博,主要用作笔记,怕以后忘记了,大神尙可路过,也可多多指教 事物用在同时保存更新数据时,及只要在事物块的范围内,有一个操作出错则事物块所有更新,保存等操作都不会执行        ...

  5. Python之正则表达式模块

    正则表达式符号: . ^ $ * + ? {} () | [] .一个点代表一个字符 ^代表开头 $代表结尾 *代表有0到无数个 [0,+00] ?代表有0到1个      [0,1] +代表有1到无 ...

  6. SQL-OVER与四种排名函数:ROW_NUMBER(),RANK(),DENSE_RANK(),NTILE()

    1 SELECT orderid,custid,val, ROW_NUMBER() OVER(ORDER BY val) AS rownum, RANK() OVER(ORDER BY val) AS ...

  7. Setting up a Single Node Cluster Hadoop on Ubuntu/Debian

    Hadoop: Setting up a Single Node Cluster. Hadoop: Setting up a Single Node Cluster. Purpose Prerequi ...

  8. 实用爬虫-01-检测爬虫的 IP

    实用爬虫-01-检测爬虫的 IP 本篇介绍一个识别爬虫 ip 的小实例(教你一招识破无效的 ip 代理) [注意事项]: 1.url 可能会失效(个人感觉,因为它带了一个2018,下面附上链接获取方法 ...

  9. ViewDragHelper详解(侧滑栏)

    1.Drag拖拽:ViewDrag拖拽视图,拖拽控件:ViewDragHelper拖拽视图助手,拖拽操作类.利用ViewDragHelper类可以实现很多绚丽的效果,比如:拖拽删除,拖拽排序,侧滑栏等 ...

  10. fiddler抓包出现Tunnel to

    在抓包的时候,有时候会遇到很多的tunnel to,图标是一把锁的形状,如下图: connect是为了建立http tunnel,connect是http众多方法中的其中一种,它跟post.get.p ...