CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning

http://mmlab.ie.cuhk.edu.hk/projects/RL-Restore/

强化学习的入门介绍:https://blog.csdn.net/aliceyangxi1987/article/details/73327378

https://www.zhihu.com/question/41775291

CNN在low-level的问题处理前沿:

deblurring:   S. Nah, T. H. Kim, and K. M. Lee. Deep multi-scale convolutional
neural network for dynamic scene deblurring. In
CVPR, 2017.

J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolutional
neural network for non-uniform motion blur removal.
In CVPR, 2015.

L. Xu, X. Tao, and J. Jia. Inverse kernels for fast spatial
deconvolution. In ECCV, 2014.

denoising:  

Y. Chen,W. Yu, and T. Pock. On learning optimized reaction
diffusion processes for effective image restoration. In CVPR,
2015.

S. Lefkimmiatis. Non-local color image denoising with convolutional
neural networks. In CVPR, 2017.

Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of
JPEG-compressed images. In CVPR, 2016.

JPEG artifacts reduction:  

C. Dong, Y. Deng, C. C. Loy, and X. Tang. Compression artifacts
reduction by a deep convolutional network. In ICCV,
2015.

J. Guo and H. Chao. Building dual-domain representations
for compression artifacts reduction. In ECCV, 2016.

Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S.
Huang. D3: Deep dual-domain based fast restoration of
JPEG-compressed images. In CVPR, 2016.

super-resolution:       

C. Dong, C. C. Loy, K. He, and X. Tang. Image superresolution
using deep convolutional networks. TPAMI,
38(2):295–307, 2016.

T.-W. Hui, C. C. Loy, and X. Tang. Depth map superresolution
by deep multi-scale guidance. In ECCV, 2016.

J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image superresolution
using very deep convolutional networks. In CVPR,
2016.

J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive
convolutional network for image super-resolution. In CVPR,
2016.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep
laplacian pyramid networks for fast and accurate superresolution.
In CVPR, 2017.

Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep
recursive residual network. In CVPR, 2017.

Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent
memory network for image restoration. In ICCV, 2017.

X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering realistic
texture in image super-resolution by deep spatial feature
transform. In CVPR, 2018.

PSNR:

详细解释,读下面的链接:

http://www.360doc.com/content/16/0919/12/496343_591970301.shtml

独热码,在英文文献中称做 one-hot code, 直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制,更加详细参加one_hot code(维基百科)。在机器学习中对于离散型的分类型的数据,需要对其进行数字化比如说性别这一属性,只能有男性或者女性或者其他这三种值,如何对这三个值进行数字化表达?一种简单的方式就是男性为0,女性为1,其他为2,这样做有什么问题?

 长短期记忆(Long-Short Term Memory, LSTM)是一种时间递归神经网络(RNN),论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。

http://www.cnblogs.com/wangduo/p/6773601.html

CVPR2018_Crafting a Toolchain for Image Restoration by Deep Reinforcement Learning的更多相关文章

  1. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  2. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  3. Learning Roadmap of Deep Reinforcement Learning

    1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...

  4. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  5. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

  6. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  7. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  8. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  9. 论文笔记之:Deep Reinforcement Learning with Double Q-learning

    Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特 ...

随机推荐

  1. tcp程序设计--客户端获取服务器输入输出流

    tcp程序设计--客户端获取服务器输入输出流 思路: 第一步:实例化一个ServerSocket对象(服务器套接字),用来等待网络上的请求(也就是等待来连接的套接字) 第二步:调用accept()方法 ...

  2. vlan配置命令

    # 为VLAN10 指定一个描述字符串“connect to LAB1”.<Sysname> system-viewSystem View: return to User View wit ...

  3. C# 按部门拆分excel文件

    按照所属部门不同将excel文件拆分成多个文件 string excel_path = @"G:\zhyue\backup\2018-08-01 读取腾讯邮箱接口-获取一个月内未接收到外部邮 ...

  4. volley4--RequestQueue

    源码: /* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, V ...

  5. 通过Application存取公共数据比如登录信息等..

    Android系统在运行每一个程序应用的时候,都会创建一个Application对象,用于存储与整个应用相关的公共变量.一个Android应用只会生成一个Application对象,在不同的Activ ...

  6. 闭包&执行环境和作用域

    闭包 执行环境和作用域参考:<javascript高级程序设计(第3版)>4.2节

  7. Spring MVC基本配置和实现(三)

    Item public class Item { private Integer id; private String name; public Integer getId() { return id ...

  8. Azure 中部署Gitlab的方法

    一.Azure 中创建Gitlab虚拟机(1).登陆Azure:打开Azure 官网,点击右侧上方的登陆Azure门户,输入Azure帐号与密码,点击 登陆 . (2).创建Gitlab虚拟机:登陆A ...

  9. 构建微软智能云:介绍新的Azure业务转型创新技术

    在我和用户的交流中发现,在任何类型和规模的组织中,每当涉及到在云中实现商业价值的最大化并取得竞争优势的时候,就会明显呈现三个趋势.首先,应用程序促进着组织更快速实现价值.同时,诸如机器学习.数据预测分 ...

  10. Linux常用基本指令——文件处理命令

    书籍方面的推荐就不做介绍,免得别人说我有广告嫌疑.大家可以直接上百度,书籍和视频遍地都是,Linux这些方面的知识都是自己在学习视频和看书的总结,内容上可能会不完美.如果有更多的见解,欢迎直接评论. ...