题目大意:
$$
f_n=
\begin{cases}
\frac{\sum\limits_{i=1}^nf_i}n+1&(n>1)\\
0&(n=1)
\end{cases}
$$
求$f_n(n<2^{31})$

题解:考虑$n>2$时的情况。

$$
f_n=\dfrac{\sum\limits_{i=1}^nf_i}n+1\\
nf_n=\sum\limits_{i=1}^{n-1}f_i+f_n+n\\
\begin{align}
(n-1)f_n=\sum\limits_{i=1}^{n-1}f_i+n\\
(n-2)f_{n-1}=\sum\limits_{i=1}^{n-2}f_i+n-1\\
\end{align}\\
(1)-(2),得:\\
(n-1)f_n-(n-2)f_{n-1}=\sum\limits_{i=1}^{n-1}f_i+n-(\sum\limits_{i=1}^{n-2}f_i+n-1)\\
(n-1)(f_n-f_{n-1})=1\\
f_n-f_{n-1}=\dfrac1{n-1}
$$

特别的,当$n=2$时,$f_{n-1}$无法用原来的公式来计算,所以$f_n-f_{n-1}$要特别计算,为$2$

当$n>1$时
$$
\begin{align*}
ans&=2+\sum\limits_{i=2}^{n-1}\dfrac1i\\
&=1+\sum\limits_{i=1}^{n-1}\dfrac1i
\end{align*}
$$
但是$n<2^{31}$,无法$O(n)$计算,但是右边的东西(调和级数$H(x)$)在$n$较大时有一个公式:$H_n=\ln(n)+\gamma$。($\gamma$的定义就是$\gamma=\lim\limits_{n\to\infty}H_n-\ln(n)$,$\gamma=0.57721566490153286060651209008240243104215933593992\dots$)

卡点:

C++ Code:

#include <cstdio>
#include <cmath>
const int limit = 1000000;
const long double EulerGamma = 0.577215664901532860606512090082; int n;
long double ans = 1;
int main() {
scanf("%d", &n);
if (n == 1) {
puts("0.00000");
return 0;
}
if (n <= limit) for (int i = 1; i < n; ++i) ans += 1 / static_cast<long double> (i);
else ans += logl(n - 1) + EulerGamma;
printf("%.5Lf\n", ans);
return 0;
}

  

[洛谷P5147]随机数生成器的更多相关文章

  1. 洛谷P3600 随机数生成器(期望dp 组合数)

    题意 题目链接 Sol 一条重要的性质:如果某个区间覆盖了另一个区间,那么该区间是没有用的(不会对最大值做出贡献) 首先不难想到枚举最终的答案\(x\).这时我们需要计算的是最大值恰好为\(x\)的概 ...

  2. 洛谷P3600随机数生成器——期望+DP

    原题链接 写到一半发现写不下去了... 所以orz xyz32768,您去看这篇题解吧,思路很清晰,我之前写的胡言乱语与之差距不啻天渊 #include <algorithm> #incl ...

  3. 洛谷P3306 随机数生成器

    题意:给你一个数列,a1 = x,ai = (A * ai-1 + B) % P,求第一个是t的是哪一项,或者永远不会有t. 解:循环节不会超过P.我们使用BSGS的思想,预处理从t开始跳√P步的,插 ...

  4. 洛谷 P3600 - 随机数生成器(期望 dp)

    题面传送门 我竟然独立搞出了这道黑题!incredible! u1s1 这题是我做题时间跨度最大的题之一-- 首先讲下我四个月前想出来的 \(n^2\log n\) 的做法吧. 记 \(f(a)=\m ...

  5. 洛谷 [P4035] 球形空间生成器

    高斯消元 注意浮点误差,判断一个浮点数是否为 0 的时候,看他的绝对值与 \(10^{-8}\)的关系 #include <iostream> #include <algorithm ...

  6. 【洛谷 P3306】[SDOI2013]随机数生成器 (BSGS)

    题目链接 怎么这么多随机数生成器 题意见原题. 很容易想到\(BSGS\)算法,但是递推式是\(X_{i+1}=(aX_i+b)\mod p\),这显然不是一个等比数列. 但是可以用矩阵乘法来求出第\ ...

  7. 洛咕 P3306 [SDOI2013]随机数生成器

    洛咕 P3306 [SDOI2013]随机数生成器 大力推式子??? \(X_{i}=\underbrace{a(a(\cdots(a(a}_{i-1个a}X_1+b)))\cdots)\) \(=b ...

  8. 洛谷NOIp热身赛题解

    洛谷NOIp热身赛题解 A 最大差值 简单树状数组,维护区间和.区间平方和,方差按照给的公式算就行了 #include<bits/stdc++.h> #define il inline # ...

  9. 【BZOJ3122】随机数生成器(BSGS,数论)

    [BZOJ3122]随机数生成器(BSGS,数论) 题面 BZOJ 洛谷 题解 考虑一下递推式 发现一定可以写成一个 \(X_{i+1}=(X_1+c)*a^i-c\)的形式 直接暴力解一下 \(X_ ...

随机推荐

  1. Maven学习(四)-----Maven中央存储库

    Maven中央存储库 当你建立一个 Maven 的项目,Maven 会检查你的 pom.xml 文件,以确定哪些依赖下载.首先,Maven 将从本地资源库获得 Maven 的本地资源库依赖资源,如果没 ...

  2. hdu1042 N!(大数求阶乘)

    N! Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submi ...

  3. Openstack 10 云环境安装

    概述 资源规划 Undercloud Installation Overcloud Installation Trouble Shooting 附录 本指南介绍了如何使用 Red Hat OpenSt ...

  4. 关于cisco路由器配置的一些参数

    单臂路由设置 Switch(config-if)#no switchport Switch(config)#ip routingSwitch(config)#interface FastEtherne ...

  5. 3.openldap生成LDAP用户

    1.用migrationtools生成用户 #yum install migrationtools -y #vim /usr/share/migrationtools/migrate_common.p ...

  6. Java 学习笔记 ------第四章 认识对象

    本章学习目标: 区分基本类型与类类型 了解对象与参考的关系 从打包器认识对象 以对象观点看待数组 认识字符串的特性 一."=" 和 "==" 当=用于基本类型时 ...

  7. python apply()函数

    python apply函数的具体的含义: apply(func [, args [, kwargs ]]) 函数用于当函数参数已经存在于一个元组或字典中时,间接地调用函数.args是一个包含将要提供 ...

  8. 使用C和C++实现“电梯”的区别

    C 面向过程:       该电梯不允许未卜先知,故程序需逐条处理乘客请求并更新当前各变量状态.       如何获得最短时间:是否立即响应请求,计算出不同决策下的总时间,并进行比较,然后选择最短时间 ...

  9. 从入门到不放弃——OO第一次作业总结

    写在最前面: 我是一个这学期之前从未接触过java的小白,对面向对象的理解可能也只是停留在大一python讲过几节课的面向对象.幸运的是,可能由于前三次作业难度还是较低,并未给我造成太大的困难,接下来 ...

  10. 第8章 Linux磁盘与文件系统管理

    认识EXT2文件系统 文件的系统特性 Linux的正规文件系统为Ext2 文件数据除了文件实际内容外,还包括其他属性(文件权限.文件属性). 文件系统将这两部分数据分别存放在不同的块,权限和属性放在i ...