[洛谷P5147]随机数生成器
题目大意:
$$
f_n=
\begin{cases}
\frac{\sum\limits_{i=1}^nf_i}n+1&(n>1)\\
0&(n=1)
\end{cases}
$$
求$f_n(n<2^{31})$
题解:考虑$n>2$时的情况。
$$
f_n=\dfrac{\sum\limits_{i=1}^nf_i}n+1\\
nf_n=\sum\limits_{i=1}^{n-1}f_i+f_n+n\\
\begin{align}
(n-1)f_n=\sum\limits_{i=1}^{n-1}f_i+n\\
(n-2)f_{n-1}=\sum\limits_{i=1}^{n-2}f_i+n-1\\
\end{align}\\
(1)-(2),得:\\
(n-1)f_n-(n-2)f_{n-1}=\sum\limits_{i=1}^{n-1}f_i+n-(\sum\limits_{i=1}^{n-2}f_i+n-1)\\
(n-1)(f_n-f_{n-1})=1\\
f_n-f_{n-1}=\dfrac1{n-1}
$$
特别的,当$n=2$时,$f_{n-1}$无法用原来的公式来计算,所以$f_n-f_{n-1}$要特别计算,为$2$
当$n>1$时
$$
\begin{align*}
ans&=2+\sum\limits_{i=2}^{n-1}\dfrac1i\\
&=1+\sum\limits_{i=1}^{n-1}\dfrac1i
\end{align*}
$$
但是$n<2^{31}$,无法$O(n)$计算,但是右边的东西(调和级数$H(x)$)在$n$较大时有一个公式:$H_n=\ln(n)+\gamma$。($\gamma$的定义就是$\gamma=\lim\limits_{n\to\infty}H_n-\ln(n)$,$\gamma=0.57721566490153286060651209008240243104215933593992\dots$)
卡点:无
C++ Code:
#include <cstdio>
#include <cmath>
const int limit = 1000000;
const long double EulerGamma = 0.577215664901532860606512090082; int n;
long double ans = 1;
int main() {
scanf("%d", &n);
if (n == 1) {
puts("0.00000");
return 0;
}
if (n <= limit) for (int i = 1; i < n; ++i) ans += 1 / static_cast<long double> (i);
else ans += logl(n - 1) + EulerGamma;
printf("%.5Lf\n", ans);
return 0;
}
[洛谷P5147]随机数生成器的更多相关文章
- 洛谷P3600 随机数生成器(期望dp 组合数)
题意 题目链接 Sol 一条重要的性质:如果某个区间覆盖了另一个区间,那么该区间是没有用的(不会对最大值做出贡献) 首先不难想到枚举最终的答案\(x\).这时我们需要计算的是最大值恰好为\(x\)的概 ...
- 洛谷P3600随机数生成器——期望+DP
原题链接 写到一半发现写不下去了... 所以orz xyz32768,您去看这篇题解吧,思路很清晰,我之前写的胡言乱语与之差距不啻天渊 #include <algorithm> #incl ...
- 洛谷P3306 随机数生成器
题意:给你一个数列,a1 = x,ai = (A * ai-1 + B) % P,求第一个是t的是哪一项,或者永远不会有t. 解:循环节不会超过P.我们使用BSGS的思想,预处理从t开始跳√P步的,插 ...
- 洛谷 P3600 - 随机数生成器(期望 dp)
题面传送门 我竟然独立搞出了这道黑题!incredible! u1s1 这题是我做题时间跨度最大的题之一-- 首先讲下我四个月前想出来的 \(n^2\log n\) 的做法吧. 记 \(f(a)=\m ...
- 洛谷 [P4035] 球形空间生成器
高斯消元 注意浮点误差,判断一个浮点数是否为 0 的时候,看他的绝对值与 \(10^{-8}\)的关系 #include <iostream> #include <algorithm ...
- 【洛谷 P3306】[SDOI2013]随机数生成器 (BSGS)
题目链接 怎么这么多随机数生成器 题意见原题. 很容易想到\(BSGS\)算法,但是递推式是\(X_{i+1}=(aX_i+b)\mod p\),这显然不是一个等比数列. 但是可以用矩阵乘法来求出第\ ...
- 洛咕 P3306 [SDOI2013]随机数生成器
洛咕 P3306 [SDOI2013]随机数生成器 大力推式子??? \(X_{i}=\underbrace{a(a(\cdots(a(a}_{i-1个a}X_1+b)))\cdots)\) \(=b ...
- 洛谷NOIp热身赛题解
洛谷NOIp热身赛题解 A 最大差值 简单树状数组,维护区间和.区间平方和,方差按照给的公式算就行了 #include<bits/stdc++.h> #define il inline # ...
- 【BZOJ3122】随机数生成器(BSGS,数论)
[BZOJ3122]随机数生成器(BSGS,数论) 题面 BZOJ 洛谷 题解 考虑一下递推式 发现一定可以写成一个 \(X_{i+1}=(X_1+c)*a^i-c\)的形式 直接暴力解一下 \(X_ ...
随机推荐
- Python运维三十六式:用Python写一个简单的监控系统
市面上有很多开源的监控系统:Cacti.Nagios.Zabbix.感觉都不符合我的需求,为什么不自己做一个呢? 用Python两个小时徒手撸了一个简易的监控系统,给大家分享一下,希望能对大家有所启发 ...
- [转]资深CTO:关于技术团队打造与管理的10问10答
一.你如何衡量软件工程师个人的工作表现?如何衡量整个工程师团队的工作表现? 主要从两方面: 这个员工做的工作是不是他同意做的或者应该做的?(What) 他们是如何完成自己的工作的?(How) 任何绩效 ...
- charles基本使用文档
Charles 主要的功能包括: 截取 Http 和 Https 网络封包. 支持重发网络请求,方便后端调试. 支持修改网络请求参数. 支持网络请求的截获并动态修改. 支持模拟慢速网络. Charle ...
- hession矩阵的计算与在图像中的应用
参考的一篇博客,文章地址:https://blog.csdn.net/lwzkiller/article/details/55050275 Hessian Matrix,它有着广泛的应用,如在牛顿方法 ...
- jvm之对象创建过程
常量池中定位类的符号引用 ↓ 检查符号引用所代表的类是否已被加载,解析和初始化过 → ↓ ...
- Ubuntu用户设置文件说明
Ubuntu用户设置文件说明 Ubuntu作为Linux的一个发行版本,自然具有Linux系统的多用户特性.因为经常会使用和管理Ubuntu的用户,现将Ubuntu系统下的User的个性化配置整理如下 ...
- Java fluent风格(转载)
转载:java Fluent风格 一.我们先写一个通常的,即不使用fluent风格 1.实体类 package com.xbq.demo.stu; /** * @ClassName: Student ...
- mtv网站架构模式适合企业网站应用吗?
mtv网站架构模式适合企业网站应用吗?有时候在思考这样一个问题. 从开发角度来说,本来mvc的进度慢了些,如果在数据库管理方面用sql的话,管理起来也不很方便.小企业网本来数据就不很多,也没什么太多安 ...
- node项目设置环境变量
在UNIX系统中: $ NODE_ENV=production node app 在Windows中: $ set NODE_ENV=production $ node app 这些环境变量会出现在程 ...
- 字符串拆分和拼接(含list拼接)---基于python
最近得一超长字符串如下: l=“5245474953544552207369703a3137322e3136312e31302e323232205349502f322e300d0a5669613a20 ...