[洛谷P5147]随机数生成器
题目大意:
$$
f_n=
\begin{cases}
\frac{\sum\limits_{i=1}^nf_i}n+1&(n>1)\\
0&(n=1)
\end{cases}
$$
求$f_n(n<2^{31})$
题解:考虑$n>2$时的情况。
$$
f_n=\dfrac{\sum\limits_{i=1}^nf_i}n+1\\
nf_n=\sum\limits_{i=1}^{n-1}f_i+f_n+n\\
\begin{align}
(n-1)f_n=\sum\limits_{i=1}^{n-1}f_i+n\\
(n-2)f_{n-1}=\sum\limits_{i=1}^{n-2}f_i+n-1\\
\end{align}\\
(1)-(2),得:\\
(n-1)f_n-(n-2)f_{n-1}=\sum\limits_{i=1}^{n-1}f_i+n-(\sum\limits_{i=1}^{n-2}f_i+n-1)\\
(n-1)(f_n-f_{n-1})=1\\
f_n-f_{n-1}=\dfrac1{n-1}
$$
特别的,当$n=2$时,$f_{n-1}$无法用原来的公式来计算,所以$f_n-f_{n-1}$要特别计算,为$2$
当$n>1$时
$$
\begin{align*}
ans&=2+\sum\limits_{i=2}^{n-1}\dfrac1i\\
&=1+\sum\limits_{i=1}^{n-1}\dfrac1i
\end{align*}
$$
但是$n<2^{31}$,无法$O(n)$计算,但是右边的东西(调和级数$H(x)$)在$n$较大时有一个公式:$H_n=\ln(n)+\gamma$。($\gamma$的定义就是$\gamma=\lim\limits_{n\to\infty}H_n-\ln(n)$,$\gamma=0.57721566490153286060651209008240243104215933593992\dots$)
卡点:无
C++ Code:
#include <cstdio>
#include <cmath>
const int limit = 1000000;
const long double EulerGamma = 0.577215664901532860606512090082; int n;
long double ans = 1;
int main() {
scanf("%d", &n);
if (n == 1) {
puts("0.00000");
return 0;
}
if (n <= limit) for (int i = 1; i < n; ++i) ans += 1 / static_cast<long double> (i);
else ans += logl(n - 1) + EulerGamma;
printf("%.5Lf\n", ans);
return 0;
}
[洛谷P5147]随机数生成器的更多相关文章
- 洛谷P3600 随机数生成器(期望dp 组合数)
题意 题目链接 Sol 一条重要的性质:如果某个区间覆盖了另一个区间,那么该区间是没有用的(不会对最大值做出贡献) 首先不难想到枚举最终的答案\(x\).这时我们需要计算的是最大值恰好为\(x\)的概 ...
- 洛谷P3600随机数生成器——期望+DP
原题链接 写到一半发现写不下去了... 所以orz xyz32768,您去看这篇题解吧,思路很清晰,我之前写的胡言乱语与之差距不啻天渊 #include <algorithm> #incl ...
- 洛谷P3306 随机数生成器
题意:给你一个数列,a1 = x,ai = (A * ai-1 + B) % P,求第一个是t的是哪一项,或者永远不会有t. 解:循环节不会超过P.我们使用BSGS的思想,预处理从t开始跳√P步的,插 ...
- 洛谷 P3600 - 随机数生成器(期望 dp)
题面传送门 我竟然独立搞出了这道黑题!incredible! u1s1 这题是我做题时间跨度最大的题之一-- 首先讲下我四个月前想出来的 \(n^2\log n\) 的做法吧. 记 \(f(a)=\m ...
- 洛谷 [P4035] 球形空间生成器
高斯消元 注意浮点误差,判断一个浮点数是否为 0 的时候,看他的绝对值与 \(10^{-8}\)的关系 #include <iostream> #include <algorithm ...
- 【洛谷 P3306】[SDOI2013]随机数生成器 (BSGS)
题目链接 怎么这么多随机数生成器 题意见原题. 很容易想到\(BSGS\)算法,但是递推式是\(X_{i+1}=(aX_i+b)\mod p\),这显然不是一个等比数列. 但是可以用矩阵乘法来求出第\ ...
- 洛咕 P3306 [SDOI2013]随机数生成器
洛咕 P3306 [SDOI2013]随机数生成器 大力推式子??? \(X_{i}=\underbrace{a(a(\cdots(a(a}_{i-1个a}X_1+b)))\cdots)\) \(=b ...
- 洛谷NOIp热身赛题解
洛谷NOIp热身赛题解 A 最大差值 简单树状数组,维护区间和.区间平方和,方差按照给的公式算就行了 #include<bits/stdc++.h> #define il inline # ...
- 【BZOJ3122】随机数生成器(BSGS,数论)
[BZOJ3122]随机数生成器(BSGS,数论) 题面 BZOJ 洛谷 题解 考虑一下递推式 发现一定可以写成一个 \(X_{i+1}=(X_1+c)*a^i-c\)的形式 直接暴力解一下 \(X_ ...
随机推荐
- 解析hdr图像文件的python实现
如题 import cv2 import numpy as np def rgbe2float(rgbe): res = np.zeros((rgbe.shape[0],rgbe.shape[1],3 ...
- cookie和session在Django中的应用
1 会话跟踪技术 什么是会话跟踪 我们需要先了解一下什么是会话!可以把会话理解为客户端与服务器之间的一次会晤,在一次会晤中可能会包含多次请求和响应.例如你给10086打个电话,你就是客户端,而1008 ...
- 工作中遇到的令人头疼的bug
工作中我们会遇到形形色色的bug,但是很多bug都可以调试很明显的看出来,这种bug解决起来我们不会那么头疼但是有些却让人头疼而捉急,特别是本地运行一切正常,上传服务器就会出现bug.现在我总结几个我 ...
- Appium+python的单元测试框架unittest(2)——fixtures(转)
(原文:https://www.cnblogs.com/fancy0158/p/10046333.html) unittest提供的Fixtures用以在测试执行前和执行后进行必要的准备和清理工作,可 ...
- CentOS 7.2二进制安装mysql-5.7.19
官方文档地址:https://dev.mysql.com/doc/refman/5.7/en/binary-installation.html 开始安装 1.下载mysql二进制包 # cd /usr ...
- [SHELL]查看端口,文件,服务关系的四个命令netstat,lsof,fuser,nmap
一,netstat (1)简介 netstat主要是用来打印系统网络的状态信息,当输入netstat后,输出如下: 可以看出,netstat的输出分为两个部分组成: 一个是Active Interne ...
- hive的内置函数和自定义函数
一.内置函数 1.一般常用函数 .取整函数 round() 当传入第二个参数则为精度 bround() 银行家舍入法:为5时,前一位为偶则舍,奇则进. .向下取整 floor() .向上取整 ceil ...
- 从零开始的Python学习Episode 8——深浅拷贝
深浅拷贝 一.浅拷贝 列表中存储的是数据的内存地址,当我们要查询或修改列表中的数据时,我们是通过列表中的地址找到要访问的内存.当我们修改列表中的数据时,如果修改的是一个不可变类型(整型,长整型,浮点数 ...
- 228. [LeetCode] Summary Ranges
Given a sorted integer array without duplicates, return the summary of its ranges. Example 1: Input: ...
- AndroidArchitecture
title: AndroidArchitecture date: 2016-04-08 23:26:20 tags: [architecture] categories: [Mobile,Androi ...