【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法
题目描述
你有一个m点生命值的奴隶主,奴隶主受伤未死且当前随从数目不超过k则再召唤一个m点生命值的奴隶主。
T次询问,每次询问如果如果对面下出一个n点攻击力的克苏恩,你的英雄期望会受到到多少伤害。
输入
输入第一行包含三个正整数 T,m,k ,T 表示询问组数,m,k 的含义见题目描述。
接下来 T 行,每行包含一个正整数 n ,表示询问进行 n 次攻击后扣减Boss的生命值点数的期望。
输出
输出共 T 行,对于每个询问输出一行一个非负整数,表示该询问的答案对 998244353 取模的结果。
样例输入
3 2 6
1
2
3
样例输出
499122177
415935148
471393168
题解
概率dp+倍增+矩阵乘法
首先需要知道本题弱化版 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 的概率dp写法:不维护期望,只维护概率,统计概率对答案的贡献。设 $p[i][j][k][l]$ 表示 $i$ 回合奴隶主1、2、3血剩余情况为 $j$ 、$k$ 、$l$ 的概率,那么对答案的贡献就是 $\frac {p[i][j][k][l]}{j+k+l+1}$ 。
本题的 $n$ 较大,考虑矩阵乘法。先预处理出状态及转移。然后相当于一个行向量乘以n个方阵,使用快速幂。
但是经过计算可知状态数为 $\sum\limits_{i=0}^kC_{i+m-1}^{m-1}$ ,加上计数器总和最大为166,每次都快速幂复杂度为 $O(T·166^3\log n)$ ,会TLE。
考虑到一个行向量乘以一个方阵的时间时 $O(n^2)$ 的,因此可以倍增预处理出方阵的 $2^i$ 次幂,然后把每个矩阵依次乘到行向量上即可。
时间复杂度 $O(166^3\log n+T·166^2\log n)$
有点卡常。。。
#include <cstdio>
#include <cstring>
#define mod 998244353
typedef long long ll;
int tot = 1;
ll inv(ll x)
{
ll ans = 1 , y = mod - 2;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
struct data
{
ll v[170][170];
data() {memset(v , 0 , sizeof(v));}
ll *operator[](int a) {return v[a];}
data operator*(data &a)
{
data ans;
int i , j , k;
for(i = 1 ; i <= tot ; i ++ )
for(j = 1 ; j <= tot ; j ++ )
for(k = 1 ; k <= tot ; k ++ )
ans[i][j] = (ans[i][j] + v[i][k] * a[k][j]) % mod;
return ans;
}
}A[60];
int f[9][9] , g[9][9][9];
ll ans[170] , tmp[170];
void mul(ll *A , data B)
{
int i , j;
memset(tmp , 0 , sizeof(tmp));
for(i = 1 ; i <= tot ; i ++ )
for(j = 1 ; j <= tot ; j ++ )
tmp[j] = (tmp[j] + A[i] * B[i][j]) % mod;
for(i = 1 ; i <= tot ; i ++ ) A[i] = tmp[i];
}
int main()
{
int T , m , p , i , j , k;
ll n , e;
scanf("%d%d%d" , &T , &m , &p);
A[0][1][1] = A[0][2][1] = A[0][2][2] = 1;
if(m == 1) tot = 3 , A[0][tot][1] = A[0][tot][2] = A[0][tot][3] = inv(2);
else if(m == 2)
{
for(i = 0 ; i <= p ; i ++ )
for(j = 0 ; j <= p ; j ++ )
if(i + j <= p)
f[i][j] = ++tot;
for(i = 0 ; i <= p ; i ++ )
{
for(j = 0 ; j <= p ; j ++ )
{
if(i + j <= p)
{
e = inv(i + j + 1);
A[0][f[i][j]][1] = A[0][f[i][j]][f[i][j]] = e;
if(i) A[0][f[i][j]][f[i - 1][j]] = i * e % mod;
if(j)
{
if(i + j < p) A[0][f[i][j]][f[i + 1][j]] = j * e % mod;
else A[0][f[i][j]][f[i + 1][j - 1]] = j * e % mod;
}
}
}
}
}
else
{
for(i = 0 ; i <= p ; i ++ )
for(j = 0 ; j <= p ; j ++ )
for(k = 0 ; k <= p ; k ++ )
if(i + j + k <= p)
g[i][j][k] = ++tot;
for(i = 0 ; i <= p ; i ++ )
{
for(j = 0 ; j <= p ; j ++ )
{
for(k = 0 ; k <= p ; k ++ )
{
if(i + j + k <= p)
{
e = inv(i + j + k + 1);
A[0][g[i][j][k]][1] = A[0][g[i][j][k]][g[i][j][k]] = e;
if(i) A[0][g[i][j][k]][g[i - 1][j][k]] = i * e % mod;
if(j)
{
if(i + j + k < p) A[0][g[i][j][k]][g[i + 1][j - 1][k + 1]] = j * e % mod;
else A[0][g[i][j][k]][g[i + 1][j - 1][k]] = j * e % mod;
}
if(k)
{
if(i + j + k < p) A[0][g[i][j][k]][g[i][j + 1][k]] = k * e % mod;
else A[0][g[i][j][k]][g[i][j + 1][k - 1]] = k * e % mod;
}
}
}
}
}
}
for(i = 1 ; i < 60 ; i ++ ) A[i] = A[i - 1] * A[i - 1];
while(T -- )
{
scanf("%lld" , &n);
memset(ans , 0 , sizeof(ans));
ans[3] = 1;
for(i = 0 ; i < 60 ; i ++ )
if(n & (1ll << i))
mul(ans , A[i]);
printf("%lld\n" , ans[1]);
}
return 0;
}
【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法的更多相关文章
- LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...
- LOJ2325「清华集训 2017」小Y和恐怖的奴隶主
题目链接 首先dp很显然,\(f(i,s)\)表示到了第i轮,各种血量人数的情况为s今后的期望攻击boss次数.那么有\(f(i,s)=\frac{1}{num+1}*\sum_{s->s'}( ...
- loj #2325. 「清华集训 2017」小Y和恐怖的奴隶主
#2325. 「清华集训 2017」小Y和恐怖的奴隶主 内存限制:256 MiB时间限制:2000 ms标准输入输出 题目类型:传统评测方式:文本比较 题目描述 "A fight? Co ...
- LibreOJ #2325. 「清华集训 2017」小Y和恐怖的奴隶主(矩阵快速幂优化DP)
哇这题剧毒,卡了好久常数才过T_T 设$f(i,s)$为到第$i$轮攻击,怪物状态为$s$时对boss的期望伤害,$sum$为状态$s$所表示的怪物个数,得到朴素的DP方程$f(i,s)=\sum \ ...
- Loj #2324. 「清华集训 2017」小 Y 和二叉树
Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...
- [LOJ#2324]「清华集训 2017」小Y和二叉树
[LOJ#2324]「清华集训 2017」小Y和二叉树 试题描述 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙 ...
- [LOJ#2323]「清华集训 2017」小Y和地铁
[LOJ#2323]「清华集训 2017」小Y和地铁 试题描述 小Y是一个爱好旅行的OIer.一天,她来到了一个新的城市.由于不熟悉那里的交通系统,她选择了坐地铁. 她发现每条地铁线路可以看成平面上的 ...
- 【UOJ#340】【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划)
[UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划) 题面 UOJ 洛谷 题解 考虑如何暴力\(dp\). 设\(f[i][a][b][c]\)表示当前到了第\(i\) ...
- loj2324 「清华集训 2017」小 Y 和二叉树
https://loj.ac/problem/2324 太智障,一开始以为中序遍历的第一个点一定是一个叶子,想了个贪心.然而,手算了一下,第一个点都过不了啊. input 5 2 3 4 1 3 3 ...
随机推荐
- 2016-2017-2 20155339 实验二《Java面向对象程序设计》实验报告
2016-2017-2 20155339 实验二<Java面向对象程序设计>实验报告 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟 ...
- 1178: [Apio2009]CONVENTION会议中心
1178: [Apio2009]CONVENTION会议中心 https://lydsy.com/JudgeOnline/problem.php?id=1178 分析: set+倍增. 首先把所有有包 ...
- 1563: [NOI2009]诗人小G
1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...
- linux中生成考核用的NTFS文件系统结构样例
实验NTFS-1说明:NTFS-1.img是一个包含NTFS文件系统的磁盘镜像,请使用winhex手工方式读出这个文件系统内的指定文件,并回答其md5 HASH值.要求: 1.利用WINHEX手工方式 ...
- windows下如何将Python文件打包成.exe可执行文件
在使用Python做开发的时候,时不时会给自己编写了一些小工具辅助自己的工作,但是由于开发依赖环境问题,多数只能在自己电脑上运行,拿到其它电脑后就没法运行了.这显得很不方便,不符合我们的初衷,那么有没 ...
- 韦大仙--LoadRunner压力测试:详细操作流程
一. 录制脚本 1.安装完毕后,创建脚本: 点击OK之后,会弹出网址,之后创建Action,每进一个页面添加一个Action,录制结束后,终止录制. 二. 修改脚本 1.脚本参数化 将登录的用户名密码 ...
- org.apache.poi版本问题
问题描述: 今天跑一段历史代码,发现不能启动,抛出java.lang.NoSuchFieldError: RETURN_NULL_AND_BLANK 问题 解决办法: 把org.apache.poi的 ...
- Fedora 26/27/28网易云音乐安装
信息从 https://www.southcity-oldboy.com/1474.html获取,感谢站长南城旧少年! 以下为前辈网页上的内容 1.安装 RPM Fusion 源 (free): ht ...
- Python-2.7 配置tab自动补全功能
作者博文地址:http://www.cnblogs.com/spiritman/ 之前一直使用shell编程,习惯了shell的 tab 自动补全功能,而Python的命令行却不支持 tab 自动补全 ...
- spark总结——转载
转载自: spark总结 第一个Spark程序 /** * 功能:用spark实现的单词计数程序 * 环境:spark 1.6.1, scala 2.10.4 */ // 导入相关类库impor ...