UVA-10129 Play on Words (判断欧拉道路的存在性)
题目大意:给出一系列单词,当某个单词的首字母和前一个单词的尾字母相同,则这两个单词能链接起来。给出一系列单词,问是否能够连起来。
题目分析:以单词的首尾字母为点,单词为边建立有向图,便是判断图中是否存在欧拉道路。有向图中存在欧拉路径的两个条件是:1、忽略边的方向性后,底图联通;2、奇点个数为0时、奇点个数为2并且满足起点的入度比出度小1和终点的出度比入度大1时,欧拉道路一定存在;
判断图的连通性有两种方法:1、利用并查集,只判断有几个根节点即可;2、使用DFS,做法实质上就是判断联通块的个数;
利用并查集:
# include<iostream>
# include<cstdio>
# include<map>
# include<set>
# include<string>
# include<cstring>
# include<algorithm>
using namespace std; int n,in[26],out[26],fa[26],mark[26];
char p[1005]; int fin(int u)
{
int x=u;
while(fa[u]!=u)
u=fa[u];
while(fa[x]!=u){
int k=fa[x];
fa[x]=u;
x=k;
}
return u;
} int get()
{
int cnt=0;
for(int i=0;i<26;++i)
if(mark[i]&&fa[i]==i)
++cnt;
return cnt;
} bool judge()
{
if(get()>1)
return false; int cnt=0;
for(int i=0;i<26;++i)
if(mark[i]&&in[i]!=out[i])
++cnt;
if(cnt>2)
return false;
if(cnt==0)
return true;
if(cnt==1)
return false; int k1=0,k2=0;
for(int i=0;i<26;++i){
if(mark[i]&&in[i]!=out[i]){
if(in[i]+1==out[i])
k1=1;
if(in[i]==out[i]+1)
k2=1;
}
}
return k1&&k2;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
memset(mark,0,sizeof(mark));
for(int i=0;i<26;++i) fa[i]=i;
scanf("%d",&n);
for(int i=0;i<n;++i){
scanf("%s",p);
int l=strlen(p);
mark[p[0]-'a']=mark[p[l-1]-'a']=1;
++out[p[0]-'a'];
++in[p[l-1]-'a'];
int u=fin(p[0]-'a');
int v=fin(p[l-1]-'a');
if(u!=v)
fa[u]=v;
}
if(judge())
printf("Ordering is possible.\n");
else
printf("The door cannot be opened.\n");
}
return 0;
}
使用DFS:
# include<iostream>
# include<cstdio>
# include<map>
# include<set>
# include<string>
# include<cstring>
# include<algorithm>
using namespace std; int n,in[26],out[26],mark[26],vis[26],mp[26][26];
char p[1005]; void dfs(int u)
{
for(int i=0;i<26;++i){
if(mark[i]&&!vis[i]&&mp[u][i]){
vis[i]=1;
dfs(i);
}
}
} bool judge()
{
int cnt=0;
memset(vis,0,sizeof(vis));
for(int i=0;i<26;++i){
if(mark[i]&&!vis[i]){
++cnt;
vis[i]=1;
dfs(i);
}
}
if(cnt>1)
return false; for(int i=0;i<26;++i)
if(mark[i]&&vis[i]==0)
return false; cnt=0;
for(int i=0;i<26;++i)
if(mark[i]&&in[i]!=out[i])
++cnt;
if(cnt>2)
return false;
if(cnt==0)
return true;
if(cnt==1)
return false; int k1=0,k2=0;
for(int i=0;i<26;++i){
if(mark[i]&&in[i]!=out[i]){
if(in[i]+1==out[i])
k1=1;
if(in[i]==out[i]+1)
k2=1;
}
}
return k1&&k2;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
memset(in,0,sizeof(in));
memset(mp,0,sizeof(mp));
memset(out,0,sizeof(out));
memset(mark,0,sizeof(mark));
scanf("%d",&n);
for(int i=0;i<n;++i){
scanf("%s",p);
int l=strlen(p);
mp[p[0]-'a'][p[l-1]-'a']=mark[p[0]-'a']=mark[p[l-1]-'a']=1;
++out[p[0]-'a'];
++in[p[l-1]-'a'];
} if(judge())
printf("Ordering is possible.\n");
else
printf("The door cannot be opened.\n");
}
return 0;
}
UVA-10129 Play on Words (判断欧拉道路的存在性)的更多相关文章
- UVa 10129 Play On Words【欧拉道路 并查集 】
题意:给出n个单词,问这n个单词能否首尾接龙,即能否构成欧拉道路 按照紫书上的思路:用并查集来做,取每一个单词的第一个字母,和最后一个字母进行并查集的操作 但这道题目是欧拉道路(下面摘自http:// ...
- UVA 10129 Play on Words(欧拉道路)
题意:给你n个字符串,问你是否可以出现一条链,保证链中每个字符串的第一个元素与上一个字符串的最后一个元素相同,注意可能重复出现同一个字符串 题解:以每一个字符串第一个元素指向最后一个元素形成一个有向图 ...
- Uva 10129 - Play on Words 单词接龙 欧拉道路应用
跟Uva 10054很像,不过这题的单词是不能反向的,所以是有向图,判断欧拉道路. 关于欧拉道路(from Titanium大神): 判断有向图是否有欧拉路 1.判断有向图的基图(即有向图转化为无向图 ...
- UVA 10441 - Catenyms(欧拉道路)
UVA 10441 - Catenyms 题目链接 题意:给定一些单词,求拼接起来,字典序最小的,注意这里的字典序为一个个单词比过去,并非一个个字母 思路:欧拉回路.利用并查集判联通,然后欧拉道路判定 ...
- 【UVa】12118 Inspector's Dilemma(欧拉道路)
题目 题目 分析 很巧秒的一道题目,对着绿书瞎yy一会. 联一下必须要走的几条边,然后会形成几个联通分量,统计里面度数为奇数的点,最后再减去2再除以2.这样不断相加的和加上e再乘以t就是答案, ...
- Nyoj42 一笔画问题 (欧拉道路)
http://acm.nyist.net/JudgeOnline/problem.php?pid=42题目链接 #include <cstdio> #include <cstring ...
- POJ 2513 Colored Sticks(欧拉道路+字典树+并查集)
http://poj.org/problem?id=2513 题意: 给定一些木棒,木棒两端都涂上颜色,求是否能将木棒首尾相接,连成一条直线,要求不同木棒相接的一边必须是相同颜色的. 思路: 题目很明 ...
- UVA10129———欧拉道路
题目 输入n(n≤100000)个单词,是否可以把所有这些单词排成一个序列,使得每个单词的第一个字母和上一个单词的最后一个字母相同(例如 acm,malform,mouse).每个单词最多包含1000 ...
- poj2480(利用欧拉函数的积性求解)
题目链接: http://poj.org/problem?id=2480 题意:∑gcd(i, N) 1<=i <=N,就这个公式,给你一个n,让你求sum=gcd(1,n)+gcd(2, ...
随机推荐
- vitess基础镜像构建流程Centos
以下列出了构建vitess使用的Centos镜像的简单流程,由于较早基础版本是Centos7.2的,重新构建可以基于最新的Centos版本构建 1.基础镜像拉取 #拉取官方版本 docker pull ...
- sql 中如何将返回的记录某一条置顶
将table1中id 为2的记录置顶select * from table1order by case when id='2' then 0 else 1 end 例子:将已发布的置顶,status ...
- QQ 空间过滤器 for V8
最近 QQ空间升级到 V8 版本,做了很大的调整, 我也做了升级,由于时间关系,功能暂时只有 模块过滤,其他过滤请等待后续更新,谢谢大家的支持! 刚刚上线,不知道你们能否看到 https://chro ...
- 基于Nginx+FastDFS搭建图片文件系统
Nginx+fastdfs:https://www.cnblogs.com/chiangchou/p/fastdfs.html#_label0_1 缩略图:https://blog.csdn.net/ ...
- C#+GDAL读写文件
读取shp文件: private void btnBrower_Click(object sender, EventArgs e) { OpenFileDialog dlg = new OpenFil ...
- Java系列介绍
Java系列目录 重新编写equals()方法,hashCode()方法,以及toString(),提供自定义的相等标准,以及自描述函数 Java 7新增功能 Java应用程序中System.out. ...
- FindBugs详解
欢迎和大家交流技术相关问题: 邮箱: jiangxinnju@163.com 博客园地址: http://www.cnblogs.com/jiangxinnju GitHub地址: https://g ...
- GreenOpenPaint的实现(六)图片的保存和打开
如果只是直接的图片保存和打开,是没有很多内容的.但是我这里,将EXIF的信息融入其中,使得图像处理的结果能够保存下来.这样就非常有价值意义了. 所有的操作都放在DOC中进行处理. 我之前已经对EXIF ...
- 20145314郑凯杰《网络对抗技术》实验1 逆向及Bof基础实践
20145314郑凯杰<网络对抗技术>实验1 逆向及Bof基础实践 1.1 实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数 ...
- 20159212杨翔实验一(熟悉Java开发环境)实验报告
实验内容 1.使用JDK编译.运行简单的Java程序: 2.使用Eclipse 编辑.编译.运行.调试Java程序. 实验步骤与体会 一.命令行下Java程序开发 1.操作过程 在虚拟环境中 ...