GAN(Generative Adversarial Nets)的发展
GAN(Generative Adversarial Nets),产生式对抗网络
存在问题:
1.无法表示数据分布
2.速度慢
3.resolution太小,大了无语义信息
4.无reference
5.intend to generate same image
6.梯度消失
论文摘要:
1、Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014.
做如下优化:

全局最优解为:

训练过程:

算法描述:先优化discriminator,再训练generator

latent code插值后出现了渐变特效:

2.Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets."arXiv preprint arXiv:1411.1784 (2014).
优化目标:

好像就是加了label信息。
3.Denton, Emily L., Soumith Chintala, and Rob Fergus. "Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks."Advances in neural information processing systems. 2015.
不知道这篇论文正式发表没有。这篇论文似乎就是做了一个GAN和提高分辨率的结合。不过本来就没有什么语义信息的图片,就算提高分辨率感觉也没什么用,所以感觉96x96分辨率的结果没什么意义。
原理:






整个test过程为:

整个train过程为:

一些例子:

4.Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).
这篇论文也不知道发表没有。
用了很多trick,什么batchnorm,全卷积无全连接,无pooling,用了LeakyReLu。
网络结构:

个人感觉效果还不错:

进行了有趣的实验:


5.Salimans, Tim, et al. "Improved techniques for training gans." arXiv preprint arXiv:1606.03498 (2016).
提出了一些改进的trick。
用feature算距离



加label
效果:感觉没什么语义信息

6.Chen, Xi, et al. "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets." arXiv preprint arXiv:1606.03657 (2016).
主要是为了解决产生一样的sample的问题
公式:



结果:

7. Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J]. arXiv preprint arXiv:1701.07875, 2017.
相关链接:https://zhuanlan.zhihu.com/p/25071913?utm_medium=social&utm_source=wechat_timeline&from=timeline
https://arxiv.org/abs/1701.07875
对生成器的loss进行散度(JS散度,KL散度)的等价转换,从而更直观也更容易分析不同loss对应的相应问题,这种分析比直接分析函数loss或者minmax函数更加容易。为了解决这些问题,引入了Wasserstein距离,替代了原来的loss。这种loss使得生成器的有一定的梯度,防止梯度消失,生成器训练不动的情况。这种loss还能指示训练效果以及防止模型崩塌。
8.Li, Chongxuan, Jun Zhu, and Bo Zhang. "Max-Margin Deep Generative Models for (Semi-) Supervised Learning." arXiv preprint arXiv:1611.07119 (2016).
实验室学长的工作,用GAN做半监督学习。利用generator产生更多的数据,帮助classfier训练。
9.Wang, Jun, et al. "IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models." arXiv preprint arXiv:1705.10513 (2017).

SIGIR 2017的best paper, 利用GAN的思想总和了检索领域的两大主流算法:一种根据关键字生成查询结果,一种评价查询和文档之间的关联性。generator用于生成,discriminator用于关联性评价。
GAN(Generative Adversarial Nets)的发展的更多相关文章
- Conditional Generative Adversarial Nets
目录 引 主要内容 代码 Mirza M, Osindero S. Conditional Generative Adversarial Nets.[J]. arXiv: Learning, 2014 ...
- Generative Adversarial Nets[Wasserstein GAN]
本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是 ...
- Generative Adversarial Nets(原生GAN学习)
学习总结于国立台湾大学 :李宏毅老师 Author: Ian Goodfellow • Paper: https://arxiv.org/abs/1701.00160 • Video: https:/ ...
- Generative Adversarial Nets(GAN Tensorflow)
Generative Adversarial Nets(简称GAN)是一种非常流行的神经网络. 它最初是由Ian Goodfellow等人在NIPS 2014论文中介绍的. 这篇论文引发了很多关于神经 ...
- 一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]
一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是ga ...
- Generative Adversarial Nets (GAN)
目录 目标 框架 理论 数值实验 代码 Generative Adversarial Nets 这篇文章,引领了对抗学习的思想,更加可贵的是其中的理论证明,证明很少却直击要害. 目标 GAN,译名生成 ...
- Generative Adversarial Nets[content]
0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...
- Generative Adversarial Nets[CAAE]
本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...
- (转)Deep Learning Research Review Week 1: Generative Adversarial Nets
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...
随机推荐
- Python 字典 update() 方法
描述 Python 字典 update() 方法用于更新字典中的键/值对,可以修改存在的键对应的值,也可以添加新的键/值对到字典中. 用法与 Python dict() 函数相似. 语法 update ...
- vim:隆重推荐括号补全插件--auto-pairs
太好用了,括号相关的各种麻烦都一一解决,剩下的就是熟练,熟练,在熟练了.呵呵 连教程都做得这么好,先放这里,以后慢慢翻译. Auto Pairs Insert or delete brackets, ...
- WCF小问题总汇
1.Q: WCF服务有没有构造函数或者静态构造函数? A:都不可用 2.Q: WCF中如何使用全局变量? A:用session绑定,或者静态变量 3.Q: WCF在WPF一直报xaml错误 A:不要把 ...
- Java中instanceof关键字的理解
java 中的instanceof 运算符是用来在运行时指出对象是否是特定类的一个实例.instanceof通过返回一个布尔值来指出,这个对象是否是这个特定类或者是它的子类的一个实例. 用法: res ...
- 山寨一个std::bind\boost::bind
这里是最初始的版本,参考https://github.com/cplusplus-study/fork_stl/blob/master/include/bind.hpp 提供了最简洁的实现方式. 第一 ...
- centos7 編譯 chmsee
安装libchm及相关的devel包,安装 xulrunner 及 devel 包!否则后面make的时候会出错! 到解压出来的chmsee/src目录下,找到与你系统对应的Makefile文件,我选 ...
- How do I add elements to a Scala List?
Scala List FAQ: How do I add elements to a Scala List? This is actually a trick question, because yo ...
- Ribbon对于SocketTimeOutException重试的坑以及重试代码解析
背景 本文基于Spring-Cloud, Daltson SR4 微服务一般多实例部署,在发布的时候,我们要做到无感知发布:微服务调用总会通过Ribbon,同时里面会实现一些重试的机制,相关配置是: ...
- git使用教程&&问题列表
git教程[转] http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000 git push ...
- HTML源文件编码的问题
刚才使用sublime text编辑html文件,在html中使用meta tag指定了charset,如下 <meta http-equiv="content-type" ...