一:BN的解释:
 定义:
顾名思义,batch normalization嘛,就是“批规范化”咯。Google在ICML文中描述的非常清晰,即在每次SGD时,通过mini-batch来对相应的activation做规范化操作,使得结果(输出信号各个维度)的均值为0,方差为1. 最后通过加入beta和gamma来还原数据的最初分布(通过这两个参数还原输出到输入的分布),则是为了让因训练所需而“刻意”加入的BN能够有可能还原最初的输入,使得在反向传播的时候,梯度能传播的更加明显,扩大网络的容量(对数据分布的容量)
解释一:在训练深层神经网络的过程中, 由于输入层的参数在不停的变化, 因此, 导致了当前层的分布在不停的变化, 这就导致了在训练的过程中, 要求 learning rate 要设置的非常小, 另外, 对参数的初始化的要求也很高. 论文作者把这种现象称为internal convariate shift. Batch Normalization 的提出就是为了解决这个问题的. BN 在每一个 training mini-batch 中对每一个 feature 进行 normalize. 通过这种方法, 使得网络可以使用较大的 learning rate, 使得训练加速;而且, BN 具有一定的 regularization 作用.
 
 
解释二:顾名思义,batch normalization嘛,就是“批规范化”咯。Google在ICML文中描述的非常清晰,即在每次SGD时,通过mini-batch来对相应的activation做规范化操作,使得结果(输出信号各个维度)的均值为0,方差为1. 而最后的“scale and shift”操作则是为了让因训练所需而“刻意”加入的BN能够有可能还原最初的输入,增加了较大的learning rate,但是会使数据的分布发生变化,这里就是要把数据的分布还原到最初的输入分布,并且提高了learning rate。
 
大家细想便会发现,的确,对于神经网络的各层输出,由于它们经过了层内操作作用,其分布显然与各层对应的输入信号分布不同,而且差异会随着网络深度增大而增大,可是它们所能“指示”的样本标记(label)仍然是不变的,这便符合了covariate shift的定义。由于是对层间信号的分析,也即是“internal”的来由。
 
原理:
 那BN到底是什么原理呢?说到底还是为了防止“梯度弥散”。关于梯度弥散,大家都知道一个简单的栗子:。在BN中,是通过将activation规范为均值和方差一致的手段使得原本会减小的激活的值变大。
 
 为什么要使用BN:
  1.在训练时,每批次输入的数据的分布都是不一样的。
    2.经过批规范化后,使得它们数据分布基本相同。
    3.经过这样,不管输入到网络中的数据是什么分布,都可以利用BN把它进行规范化,达到差不多的分布。
    4.最后输出的时候,利用Beta和Gramma来还原数据同分布(跟每次归一化一样的数据分布,因为涉及到每个层要加归一化,所以这里是还原归一化的数据同分布),Beta和Gramma是通过学习学习到的。
 
BN就是在神经网络的训练过程中对每层的输入数据加一个标准化处理。
 
 
传统的神经网络,只是在将样本x输入输入层之前对x进行标准化处理(减均值,除标准差),以降低样本间的差异性。BN是在此基础上,不仅仅只对输入层的输入数据x进行标准化,还对每个隐藏层的输入进行标准化。
 
 
 

 
 
 
在tensorflow中的应用 

  tensorflow中具有一个这样的方法,可以让我们归一化数据

# value表示输入的value,mean表示value的均值,variance表示方差,这两个参数用来计算value的normalization,eps:分母附加值,防止除以方差时出现除0操作,默认为1e-5


# beta,gamma会在训练时进行学习


tf.nn.batch_normalization(value, mean, variance, beta, gamma, 1e-5)

  我们在训练的时候,方差和均值,需要记录一个影子变量,这个影子变量用来当输入测试集的时候,只有单一的数据,没有均值和方差(在训练的时候,是一个batch的输入,具有均值和方差),利用影子变量来记算均值和方差。影子变量可以参考这篇博客

  具体代码数据归一层的代码如下:

"""
参考 https://www.cnblogs.com/cloud-ken/p/7521609.html
加入这个衰减率的原因是为了预测下一次的方差和均值,因为当输入测试集的时候,我们要给他均值和方差,只有一个数据,没有均值和方差,在输入训练集的时候是一个batch的输入,具有均值和方差
所以使用影子变量来记录均值和方差,
所以这里分训练和不训练,为了让归一化更好,与其说是让归一化更好,实际上时,为了让输入的数据的均值和方差,更加趋向我们的测试数据分布,使其测试率更加准确。
shadow_variable = decay * shadow_variable + (1 - decay) * updated_model_variable
"""
# 数据归一化 为了提高学习率,使得数据的均值为0,方差为1,最后加入beta和gamma来还原数据分布
def batch_norm(value, is_train=True, name='batch_norm',
epsilon=1e-5, momentum=0.9):
with tf.variable_scope(name): # tf.train.ExponentialMovingAverage用于更新参数,参数越大,模型越稳定
ema = tf.train.ExponentialMovingAverage(decay=momentum) # value.get_shape().as_list()[-1] 获取value最后一维的大小
shape = value.get_shape().as_list()[-1]
#print(value,shape) # 这里加入beta和gamma的意思就是让经过归一化的数据趋近于输入时候的分布,公式中的那两个参数,这两个参数为利用梯度下降进行学习
beta = bias('beta', [shape], bias_start=0.0)
gamma = bias('gamma', [shape], bias_start=1.0) if is_train:
# 求均值和方差
batch_mean, batch_variance = tf.nn.moments(value, [0, 1, 2], name='moments')
# 定义影子变量的名字,方便以后进行调用
moving_mean = bias('moving_mean', [shape], 0.0, False)
moving_variance = bias('moving_variance', [shape], 1.0, False) # 进行衰减,不使用原来的变量,衰减均值和方差
with tf.variable_scope(tf.get_variable_scope(), reuse=False):
# 进行计算影子变量
ema_apply_op = ema.apply([batch_mean, batch_variance]) # ema.average获取影子变量(也叫滑动平均值),把移动的平均分配给moving_mean bias值,相当于平均移动多少 assign为重新赋值的操作
assign_mean = moving_mean.assign(ema.average(batch_mean))
assign_variance = moving_variance.assign(ema.average(batch_variance)) """
tf.control_dependencies指定某些操作执行的依赖关系,control_dependencies(control_input)返回一个控制依赖的上下文管理器,
使用with关键字可以让在这个上下文环境中的操作都在ema_apply_op执行,control_input必须是一个list,使用[]是将ema_apply_op
转换为一个list
"""
# 这里也可以不在计算影子变量后执行
with tf.control_dependencies([ema_apply_op]):
# 这里加tf.identity的作用的是加入一个op,如果不加一个op的话,这里这个控制依赖就无法执行,因为tf.control_dependencies定义的是op的执行顺序
mean, variance = tf.identity(batch_mean), tf.identity(batch_variance) """
这里为什么要在这后面执行,因为这里要记录影子变量,为什么能记录,因为在一个variable_scope下面,到时候调用这个variable_scope的名字,可以直接调用这个变量
然后才返回数据归一化后的结果
"""
with tf.control_dependencies([assign_mean, assign_variance]):
# value表示输入的value,mean表示value的均值,variance表示方差,这两个参数用来计算value的normalization,eps:分母附加值,防止除以方差时出现除0操作,默认为1e-5
# beta,gamma会在训练时进行学习
return tf.nn.batch_normalization(value, mean, variance, beta, gamma, 1e-5) else:
mean = bias('moving_mean', [shape], 0.0, False)
variance = bias('moving_variance', [shape], 1.0, False) return tf.nn.batch_normalization(
value, mean, variance, beta, gamma, epsilon)

深度学习(八) Batch Normalization的更多相关文章

  1. 深度学习中 Batch Normalization

    深度学习中 Batch Normalization为什么效果好?(知乎) https://www.zhihu.com/question/38102762

  2. 深度学习之Batch Normalization

    在机器学习领域中,有一个重要的假设:独立同分布假设,也就是假设训练数据和测试数据是满足相同分布的,否则在训练集上学习到的模型在测试集上的表现会比较差.而在深层神经网络的训练中,当中间神经层的前一层参数 ...

  3. 深度学习中 Batch Normalization为什么效果好

    看mnist数据集上其他人的CNN模型时了解到了Batch Normalization 这种操作.效果还不错,至少对于训练速度提升了很多. batch normalization的做法是把数据转换为0 ...

  4. 深度学习中batch normalization

    目录 1  Batch Normalization笔记 1.1  引包 1.2  构建模型: 1.3  构建训练函数 1.4  结论 Batch Normalization笔记 我们将会用MNIST数 ...

  5. zz详解深度学习中的Normalization,BN/LN/WN

    详解深度学习中的Normalization,BN/LN/WN 讲得是相当之透彻清晰了 深度神经网络模型训练之难众所周知,其中一个重要的现象就是 Internal Covariate Shift. Ba ...

  6. 深度学习中的Normalization模型

    Batch Normalization(简称 BN)自从提出之后,因为效果特别好,很快被作为深度学习的标准工具应用在了各种场合.BN 大法虽然好,但是也存在一些局限和问题,诸如当 BatchSize ...

  7. [优化]深度学习中的 Normalization 模型

    来源:https://www.chainnews.com/articles/504060702149.htm 机器之心专栏 作者:张俊林 Batch Normalization (简称 BN)自从提出 ...

  8. 深度学习之Batch归一化

    前言            以下内容是个人学习之后的感悟,转载请注明出处~ Batch归一化 在神经网络中,我们常常会遇到梯度消失的情况,比如下图中的sigmod激活函数,当离零点很远时,梯度基本为0 ...

  9. 关于深度学习之中Batch Size的一点理解(待更新)

    batch 概念:训练时候一批一批的进行正向推导和反向传播.一批计算一次loss mini batch:不去计算这个batch下所有的iter,仅计算一部分iter的loss平均值代替所有的. 以下来 ...

  10. 算法工程师<深度学习基础>

    <深度学习基础> 卷积神经网络,循环神经网络,LSTM与GRU,梯度消失与梯度爆炸,激活函数,防止过拟合的方法,dropout,batch normalization,各类经典的网络结构, ...

随机推荐

  1. MSP430 G2553 Launchpad实现电容测量

    一.基本原理 对于Source-Free RC电路,其电容放电的特性可以描述为: 其中V0是电容的初始电压,t是放电时间,R是串接的电阻阻值,C是电容值,v(t)是t时刻电容上的电压.因此,若已知V0 ...

  2. 【转】Android EventBus初探

    出处:http://blog.csdn.net/lmj623565791/article/details/40794879 1.概述 最近大家面试说经常被问到EventBus,github上果断dow ...

  3. 在Eclipse中卸载Team Explorer Everywhere

  4. ajax +LoadLayer插件实现访问页面跳转loading..

    布局页:第一步进行扩展ajax$(function () { $.ajax2 = function (options) {//遮罩 Mask();//jquery 原生ajax $.ajax(opti ...

  5. Selenium框架切换-----Selenium快速入门(七)

    上一篇说了窗口的切换,本篇说说框架的切换. 切换框架:是指切换html中的iframe标签元素或者frame标签元素,注意,并不包括frameset 以下是常用的方法: 方法 说明 WebDriver ...

  6. Ubuntu 12.04 Openssh 安装过程

    1.输入 apt-get install openssh-server 注意 出现依赖 需要使用 查看依赖是否需要,如果不需要可以直接删除,sudo apt-get remove XXXX 或者sud ...

  7. IIS隐藏网站

    IIS隐藏网站 1.站点建立一个文件夹:Test 2.在F盘新建Web文件夹(放要隐藏的网站) 3.右键Test文件夹-新建虚拟目录,虚拟目录指向步骤2 4.删除Test文件夹即可

  8. MyBatis高级及其SSM框架搭建

    代码生成器 首先meaven项目中导入支持包 <dependencies> <!-- https://mvnrepository.com/artifact/mysql/mysql-c ...

  9. IIS发布好的网页突然不显示图片了

    按以下步骤把地址加到ie的本地intranet就好了

  10. input disabled的情况下在IOS设备中怎么修改颜色

    -webkit-text-fill-color:black; -webkit-opacity:1; opacity: 1; 一句代码就欧了