bzoj2120 / P1903 [国家集训队]数颜色 / 维护队列(带修改莫队)
带修改的莫队
在原有指针$(l,r)$上又添加了时间指针$t$
贴一段dalao的解释
带修改的莫队,和原版莫队相比,多了一个时间轴
原版莫队是将区间(l,r)视为点(l,r),带修改的即加一维时间轴(l,r,t)
对于t轴的移动可以保存每次修改,如果修改在(l,r)间则更新
分块方法可以参照原版莫队,先将l分块,再讲r分块,同一块的按t排序
块大小为
可以达到最快的理论复杂度
,证明如下
设分块大小为a,莫队算法时间复杂度主要为t轴移动,同r块l,r移动,l块间的r移动三部分
t轴移动的复杂度为
,同r块l,r移动复杂度为
,l块间的r移动复杂度为
三个函数max的最小值当a为
取得,为
给出一个并不严格的假证明
每次查询时:
$t$轴每次最多移动$t$次。而$l,r$指针在块上的组合共$n^{2}/a^{2}$种,故复杂度$O(n^{2}t/a^{2})$
$l$轴每次最多移动$2a$次,最多$n$次。复杂度$O(na)$
$r$轴每次最多移动的次数是一个递减的等差数列:$n,n-a,n-2a.....$,最多共移动$((n+a)(n/a)/2)$次。所以复杂度就是$O(n^{2}/a)$辣
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
void read(int &x){
static char c=getchar();x=;
while(c<''||c>'') c=getchar();
while(''<=c&&c<='') x=x*+(c^),c=getchar();
}
#define N 50005
struct data{int x,y,t,id;}a[N];
struct modi{int id,pre,now;}d[N];
int Len,n,m,Q,T,L,R,tot,b[N],c[],ans[N]; inline int bel(int x){return (x-)/Len+;}
bool cmp(data A,data B){
if(bel(A.x)!=bel(B.x)) return bel(A.x)<bel(B.x);
if(bel(A.y)!=bel(B.y)) return bel(A.y)<bel(B.y);
return A.t<B.t;
}
int main(){
char opt[]; int q1,q2;
read(n);read(m); register int i;
for(i=;i<=n;++i) read(b[i]);
for(i=;i<=m;++i){
scanf("%s",opt),read(q1),read(q2);
if(opt[]=='Q') a[++Q]=(data){q1,q2,T,Q};
else d[++T].pre=b[q1],d[T].id=q1,d[T].now=b[q1]=q2;
}
Len=ceil(exp((log(n)+log(T))/));//bzoj酱紫写会RE,直接sqrt(n)就好辣 虽然复杂度没办法保证....
for(i=T;i;--i) b[d[i].id]=d[i].pre;
sort(a+,a+Q+,cmp);
L=R=; T=; c[b[]]=tot=;
for(int i=,Id;i<=Q;++i){
while(L<a[i].x) tot-=(c[b[L]]==),--c[b[L]],++L;
while(L>a[i].x) --L,tot+=(c[b[L]]==),++c[b[L]];
while(R<a[i].y) ++R,tot+=(c[b[R]]==),++c[b[R]];
while(R>a[i].y) tot-=(c[b[R]]==),--c[b[R]],--R;
while(T<a[i].t){
++T; Id=d[T].id;
if(L<=Id&&Id<=R) tot-=(c[b[Id]]==),--c[b[Id]];
b[Id]=d[T].now;
if(L<=Id&&Id<=R) tot+=(c[b[Id]]==),++c[b[Id]];
}
while(T>a[i].t){
Id=d[T].id;
if(L<=Id&&Id<=R) tot-=(c[b[Id]]==),--c[b[Id]];
b[Id]=d[T].pre; --T;
if(L<=Id&&Id<=R) tot+=(c[b[Id]]==),++c[b[Id]];
}
ans[a[i].id]=tot;
}
for(i=;i<=Q;++i) printf("%d\n",ans[i]);
return ;
}
bzoj2120 / P1903 [国家集训队]数颜色 / 维护队列(带修改莫队)的更多相关文章
- P1903 [国家集训队]数颜色 / 维护队列 带修改莫队
题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...
- 洛谷 P1903 [国家集训队]数颜色 / 维护队列 带修莫队
题目描述 墨墨购买了一套\(N\)支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: \(1\). \(Q\) \(L\) \(R\)代表询问你从第\(L\) ...
- Luogu P1903 [国家集训队]数颜色 / 维护队列 (带修莫队)
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> ...
- luogu 1903 [国家集训队]数颜色 / 维护队列 带修改莫队
十分玄学的数据结构~ code: #include <bits/stdc++.h> #define N 1000006 #define setIO(s) freopen(s".i ...
- P1903 [国家集训队]数颜色 / 维护队列 带修改的莫队
\(\color{#0066ff}{ 题目描述 }\) 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支 ...
- 题解 洛谷P1903/BZOJ2120【[国家集训队]数颜色 / 维护队列】
对于不会树套树.主席树的本蒟蒻,还是老老实实的用莫队做吧.... 其实这题跟普通莫队差不了多远,无非就是有了一个时间,当我们按正常流程排完序后,按照基本的莫队来,做莫队时每次循环对于这一次操作,我们在 ...
- P1903 [国家集训队]数颜色 / 维护队列(莫队区间询问+单点修改)
题目链接:https://www.luogu.org/problemnew/show/P1903 题目大意:中文题目 具体思路:莫队单点修改+区间询问模板题,在原来的区间询问的基础上,我们要记录当前这 ...
- P1903 [国家集训队]数颜色 / 维护队列
思路 带修莫队的板子 带修莫队只需要多维护一个时间的指针即可,记录一下每个询问在第几次修改之后,再回退或者前进几个修改操作 排序的时候如果a.l和b.l在一个块里,就看r,如果a.r和b.r在一个块里 ...
- P1903 [国家集训队]数颜色 / 维护队列(带修莫队)
题目描述: 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. ...
随机推荐
- node使用 mongoose聚合 group
var mongoose = require('mongoose'); mongoose.connect("mongodb://localhost:27017/test", fun ...
- 海量数据找相同数,高配词,不重复的数,判断一个数是否存在,查询串,不同电话号码的个数,中位数,按照query频度排序,topk
这类题目,首先需要确定可用内存的大小,然后确定数据的大小,由这两个参数就可以确定hash函数应该怎么设置才能保证每个文件的大小都不超过内存的大小,从而可以保证每个小的文件都能被一次性加载到内存中. 1 ...
- gcc常用命令使用
gcc编译文件过程 .c文件到 .i文件 到.s(汇编文件) 到.o文件,再到可执行文件 .c到.i 实操一下: test.c文件如下 : #include <stdlib.h> #inc ...
- Servlet交互与JSP
主要内容介绍 数据共享与页面跳转 1. 为什么要有跳转: Servlet需要跳转到其它Servlet中,因为我们需要职责分明,不同Servlet来完成不同的功能 Servlet跳转到JSP中,Serv ...
- C++ 解析json串
首先, C++ 解析json串,需要用到第三方库(json_vc71_libmtd.lib).然后,VS2010,创建项目json_read,配置项目属性.最后,拷贝下面的代码就可以看到效果了. #i ...
- python基础-abstractmethod、__属性、property、setter、deleter、classmethod、staticmethod
python基础-abstractmethod.__属性.property.setter.deleter.classmethod.staticmethod
- install apache-activemq
进入bin/linux-x86-64下 cd apache-activemq-5.14.1/bin/linux-x86-64/ 启动 ./activemq start 五.启动成功后,访问 activ ...
- jdk8新特性-亮瞎眼的lambda表达式
jdk8之前,尤其是在写GUI程序的事件监听的时候,各种的匿名内部类,大把大把拖沓的代码,程序毫无美感可言!既然Java中一切皆为对象,那么,就类似于某些动态语言一样,函数也可以当成是对象啊!代码块也 ...
- uva 1416 Warfare And Logistics
题意: 给出一个无向图,定义这个无向图的花费是 其中path(i,j),是i到j的最短路. 去掉其中一条边之后,花费为c’,问c’ – c的最大值,输出c和c’. 思路: 枚举每条边,每次把这条边去掉 ...
- GCD(Swift)
1.取消过去的接口 说起 GCD, 大家肯定回想起类似 dispatch_async 这样的语法. GCD 的这个语法模式无论是和 Objc 还是 Swift 的整体风格都不太打掉. 所以 Swift ...
可以达到最快的理论复杂度
,证明如下
,同r块l,r移动复杂度为
,l块间的r移动复杂度为 
取得,为