[知识点]SPFA算法
// 此博文为迁移而来,写于2015年4月9日,不代表本人现在的观点与看法。原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vx93.html
#include <cstdio>
#include <cstring> #define MAXN 10000
#define MAXM 100000
#define INF 0x3f3f3f3f int T, n, m, u, v, w;
int h[MAXN], q[MAXN], o, dis[MAXN], vis[MAXN], s, t; struct Edge {
int v, next, w;
} edge[MAXM * ]; void addEdge(int u, int v, int w) {
edge[++o] = (Edge) {v, h[u], w}, h[u] = o;
} int SPFA(int s, int t) {
int head = , tail = ;
while (head != tail) {
int o = q[head];
for (int x = h[o]; x; x = edge[x].next) {
int v = edge[x].v;
if (dis[o] + edge[x].w < dis[v]) {
dis[v] = dis[o] + edge[x].w;
if (!vis[v]) q[tail++] = v, vis[v] = ;
}
}
vis[o] = ;
head++;
}
return dis[t];
} int main() {
scanf("%d %d", &n, &m);
for (int i = ; i <= m; i++) {
scanf("%d %d %d", &u, &v, &w);
addEdge(u, v, w), addEdge(v, u, w);
}
scanf("%d", &T);
for (int i = ; i <= T; i++) {
memset(vis, , sizeof(vis)), memset(dis, INF, sizeof(dis));
scanf("%d %d", &s, &t);
dis[s] = , vis[s] = , q[] = s;
printf("%d", SPFA(s, t));
}
return ;
}
[知识点]SPFA算法的更多相关文章
- 最短路径问题的Dijkstra和SPFA算法总结
Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...
- SPFA算法
SPFA算法 一.算法简介 SPFA(Shortest Path Faster Algorithm)算法是求单源最短路径的一种算法,它是Bellman-ford的队列优化,它是一种十分高效的最短路算法 ...
- SPFA算法学习笔记
一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...
- 用scheme语言实现SPFA算法(单源最短路)
最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学 ...
- SPFA算法心得
SPFA算法是改进后的Bellman-Ford算法,只是速度更快,而且作为一个算法,它更容易理解和编写,甚至比Dijkstra和B-F更易读(当然,Floyd是另一回事了,再也没有比Floyd还好写的 ...
- 最短路径--SPFA 算法
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...
- Bellman-Ford & SPFA 算法——求解单源点最短路径问题
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好 ...
- UVA 10000 Longest Paths (SPFA算法,模板题)
题意:给出源点和边,边权为1,让你求从源点出发的最长路径,求出路径长度和最后地点,若有多组,输出具有最小编号的最后地点. #include <iostream> #include < ...
- 最短路径算法之四——SPFA算法
SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点 ...
随机推荐
- jcaptcha组件小小改造解决Invalid ID, could not validate une
https://my.oschina.net/chainlong/blog/192014
- Redis处理文件日志并发(2)
多线程操作同一个文件时会出现并发问题.解决的一个办法就是给文件加锁(lock),但是这样的话,一个线程操作文件时,其它的都得等待,这样的话性能非常差.另外一个解决方案,就是先将数据放在队列中,然后开启 ...
- android:installLocation = "auto" 的用法
在Froyo(android 2.2,API Level:8)中引入了android:installLocation.通过设置该属性可以使得开发者以及用户决定程序的安装位置. android:inst ...
- 在ubuntu上搭建开发环境4---ubuntu简单的搭建LAMP环境和配置
最近重新安装了Ubuntu,但是之前的LAMP环境自然也就没有了,实在是不想再去编译搭建LAMP环境(这种方法实在是太费时间,而且太容易遇到各种不知道为什么的错误),所以,就去查查有没有什么简单的搭建 ...
- phpMailer在thinkPHP框架中邮件发送
资源下载地址:http://pan.baidu.com/s/1c0kAoeO 提取码:ry5v 关键代码:application/Common/Common/funciton.php <?php ...
- PRD产品需求文档
什么是PRD? PRD是Product Requirement Document的英文缩写,即产品需求文档的意思.PRD昰产品流程中的最后一步工作,是将原型中的功能.界面具象化描述,是提交给设计(UI ...
- JAVA的容器---List,Map,Set (转)
JAVA的容器---List,Map,Set Collection├List│├LinkedList│├ArrayList│└Vector│ └Stack└SetMap├Hashtable├HashM ...
- 搭建Mantis 缺陷管理系统(转)
转自 什么是Mantis MantisBT is a free popular web-based bugtracking system (feature list). It is written i ...
- 在Salesforce中编写Unit Test
Unit Test 也是一个 Class 文件,所以在创建 Unit Test 的时候要选择 Test Class 类型来创建,请看如下截图(在Eclipse中): 编写 Unit Test 基本流程 ...
- 原生JavaScript 全特效微博发布面板效果实现
javaScript实现微博发布面板效果.---转载白超华 采用的js知识有: 正则表达式区分中英文字节.随机数生成等函数 淡入淡出.缓冲运动.闪动等动画函数 onfocus.onblur.oninp ...