cf1208 E Let Them Slide(差分+RMQ\单调队列)
题意
如题目的图所示,每行都可以左右移动,但是数字不允许断开,且不许越界(宽度为w)。
单独求每一列的最大的和为多少。
思路
对于每一列来说,在每一行上都有一个可以取到的区间,
所以,对于一列来说,答案就是每行的区间最大值的和。区间最大值可以用RMQ或者单调队列求。
一开始题目看错了,以为是w*n<=1e6,其实是w<=1e6,n<=1e6,Σleni<=1e6(leni为第i行的长度),直接上w*n*log,果断T了。
显然,当leni 比w小很多时,中间会有很多列都可以取到整行的所有数字,所以对于这些列,它们求的区间最大值,其实就是整行的最大值。
对于头尾的一些列,取不到所有数字,那我们就暴力算出它们可以取到的区间,然后查询。
由于w*n<=1e12,而中间那些列查出来的最大值其实是一样的,所以可以用差分。
(一些细节)
有时候查询出来的区间最大值是负数,但是有时候其实可以取到0(移到空格),而有时候只能取负数(移不到空格)。
len <= i <= w - len + 1 符合条件的第i列可以取到整行
当整行都为负数时,
有时候第len列和第(w-len+1)列只能取负数,
但是,第len+1列和第(w-len+1 - 1)列一定可以取到空格,也就是0
所以,我们把第len列和第(w-len+1)列,归为暴力算的部分,因为暴力算的时候,都有特判是否可以取0。
这样,中间的那些就可以直接max(0,rmq(1,len))了
代码(RMQ)
(我的姿势比较差,代码又长,跑的还慢,跑了700+ms)
#include <stdio.h>
#include <queue>
#include <string>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <set>
using namespace std;
typedef long long int ll;
const int maxn = 1e6 + ;
const int inf = ;
const ll mod = ;
const ll seed = ;
int st[maxn][],mm[maxn],b[maxn];
void initRMQ(int n)
{
mm[] = -;
for(int i = ;i <= n;i++){
mm[i] = ((i & (i - )) == ) ? mm[i - ] + :mm[i - ];
st[i][] = b[i];
}
for(int j = ;j <= mm[n];j++){
for(int i = ;i + ( << j) - <= n;i++){
st[i][j] = max(st[i][j - ],st[i + ( << (j - ))][j - ]);
}
}
}
int rmq(int x,int y)
{
int k = mm[y - x + ];
return max(st[x][k],st[y - ( << k) + ][k]);
}
ll ans[maxn];
int main()
{
int n,w,len,l,r;
ll temp;
while(scanf("%d%d",&n,&w) != EOF){
memset(ans,,sizeof(ans));
while(n--){
scanf("%d",&len);
for(int i = ;i <= len;i++){
scanf("%d",&b[i]);
}
initRMQ(len); //i <= w - len + 1
//i >= len
//len <= i <= w - len + 1 符合条件的第i列可以取到整行
int cnt = w,flag = ; //中间
if(len + <= w - len + - ){
temp = max((ll)rmq(,len),(ll));
ans[len + ] += temp;
ans[w - len + ] -= temp;
cnt = len;
flag = ;
} //头
for(int i = ;i <= cnt;i++){
if(len >= i)
r = i;
else
r = len;
if(w - len < i)//w-len+l=i
l = i - (w - len);
else
l = ; temp = rmq(l,r);
if(temp < ){
if(len < i || (w - len) >= i)
temp = ;
}
ans[i] += temp;
ans[i + ] -= temp;
} //尾
if(!flag)
cnt = len;
else
cnt = ;
for(int i = w - len + + cnt;i <= w;i++){
if(len >= i)
r = i;
else
r = len;
if(w - len < i)//w-len+l=i
l = i - (w - len);
else
l = ; temp = rmq(l,r);
if(temp < ){
if(len < i || (w - len) >= i)
temp = ;
}
ans[i] += temp;
ans[i + ] -= temp;
}
} for(int i = ;i <= w;i++){
ans[i] += ans[i - ];
printf("%lld ",ans[i]);
}
puts("");
}
return ;
}
代码(单调队列)
很久没写了,正好复习一下。
单调队列O(n),RMQ O(nlogn),还以为会快一些,但是也一样跑了700+ms
#include <stdio.h>
#include <queue>
#include <string>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <set>
using namespace std;
typedef long long int ll;
const int maxn = 1e6 + ;
const int inf = ;
const ll mod = ;
const ll seed = ;
int qu[maxn],b[maxn];//qu存下标
ll ans[maxn];
int main()
{
int n,w,len,l,r;
ll temp,mx;
while(scanf("%d%d",&n,&w) != EOF){
memset(ans,,sizeof(ans));
while(n--){
mx = ;
scanf("%d",&len);
for(int i = ;i <= len;i++){
scanf("%d",&b[i]);
mx = max(mx,(ll)b[i]);
} //i <= w - len + 1
//i >= len
//len <= i <= w - len + 1 符合条件的第i列可以取到整行
int cnt = len,flag = ; //中间
if(len + <= w - len + - ){
ans[len + ] += mx;
ans[w - len + ] -= mx;
flag = ;
} //头
int head = ,tail = -;
for(int i = ;i <= cnt;i++){
while(head <= tail && b[qu[tail]] <= b[i])
tail--;
qu[++tail] = i;
while(qu[head] < i - (w - len))
head++; temp = b[qu[head]];
if(temp < ){
if(len < i || (w - len) >= i)
temp = ;
}
ans[i] += temp;
ans[i + ] -= temp;
} //尾
if(!flag)
cnt = len + ;
else
cnt = w - len + ;
head = ;tail = -;
for(int i = w;i >= cnt;i--){
int pos = i - (w - len);
while(head <= tail && b[qu[tail]] <= b[pos])
tail--;
qu[++tail] = pos;
while(qu[head] > pos + (w - len))
head++; temp = b[qu[head]];
if(temp < ){
if(len < i || (w - len) >= i)
temp = ;
}
ans[i] += temp;
ans[i + ] -= temp;
}
} for(int i = ;i <= w;i++){
ans[i] += ans[i - ];
printf("%lld ",ans[i]);
}
puts("");
}
return ;
}
cf1208 E Let Them Slide(差分+RMQ\单调队列)的更多相关文章
- 树形DP+RMQ+单调队列(Bob’s Race HDU4123)
题意:有n个房子,这些房子被n-1条道路连接,有一些运动员从一个房子为起点尽可能跑最远的距离且不能通过一条道路超过两次,这些运行员不能选择同样的起点,这些运动员跑的最远距离和最近距离的差值不能超过Q, ...
- PKU 2823 Sliding Window(线段树||RMQ||单调队列)
题目大意:原题链接(定长区间求最值) 给定长为n的数组,求出每k个数之间的最小/大值. 解法一:线段树 segtree节点存储区间的最小/大值 Query_min(int p,int l,int r, ...
- ACM学习历程—HDU 5289 Assignment(线段树 || RMQ || 单调队列)
Problem Description Tom owns a company and he is the boss. There are n staffs which are numbered fro ...
- 两种解法-树形dp+二分+单调队列(或RMQ)-hdu-4123-Bob’s Race
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4123 题目大意: 给一棵树,n个节点,每条边有个权值,从每个点i出发有个不经过自己走过的点的最远距离 ...
- 模板 RMQ问题ST表实现/单调队列
RMQ (Range Minimum/Maximum Query)问题是指: 对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,R ...
- HDU - 5289 Assignment (RMQ+二分)(单调队列)
题目链接: Assignment 题意: 给出一个数列,问其中存在多少连续子序列,使得子序列的最大值-最小值<k. 题解: RMQ先处理出每个区间的最大值和最小值(复杂度为:n×logn),相 ...
- HDU 5289 Assignment(多校2015 RMQ 单调(双端)队列)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5289 Problem Description Tom owns a company and he is ...
- HDU - 5289:Assignment(单调队列||二分+RMQ||二分+线段树)
Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this com ...
- 大视野 1012: [JSOI2008]最大数maxnumber(线段树/ 树状数组/ 单调队列/ 单调栈/ rmq)
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 9851 Solved: 4318[Submi ...
随机推荐
- install正常,deploy上传jar失败致使打包失败
[INFO] Scanning for projects...[INFO] [INFO] ------------------------------------------------------- ...
- jq插件和jq
封装一个jq (function(win) { var jQuery = function(selecter) { this.version = '1.0.1'; //版本号 this.selecte ...
- cmd命令打开本地*.db数据文件的一些坑
昨天刚看了下sqlite数据库,用的是cmd窗口 写的,建了几个表,今天在次打开,发现.问题有点小多啊.. 我也不知道我的数据库名字后面为啥会带 (“ : ”) 下面是我的数据文件: 刚开始看了下, ...
- CheckBox标签和属性
CheckBox的作用:可以提供复选 下面是我点击按钮查看所选内容的代码:定义按钮监听器,并在onClick方法中调用shoeAlt方法(此方法会在第二块代码定义) Button btn=(Butto ...
- S7-200 smart 网线下载与调试配置
打开 step microwin 7 smart 软件. 连接PLC 打开 通讯模块 我把电脑的改成了如下 我编写的简单的程序 通过外部一个开关 实现输出的一个 IO 的接通与断开 下载完成程序以后 ...
- wireshark混杂模式
来自:https://blog.csdn.net/mukami0621/article/details/78645825 通过设置网卡为混杂模式就能捕获局域网内所有发包内容,包括非广播包和非发给自己主 ...
- UVA - 10635 Prince and Princess(LCS,可转化为LIS)
题意:有两个长度分别为p+1和q+1的序列,每个序列中的各个元素互不相同,且都是1~n2的整数.两个序列的第一个元素均为1.求出A和B的最长公共子序列长度. 分析: A = {1,7,5,4,8,3, ...
- HihoCoder第十四周:无间道之并查集
#1066 : 无间道之并查集 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 这天天气晴朗.阳光明媚.鸟语花香,空气中弥漫着春天的气息--额,说远了,总之,小Hi和小H ...
- VC 插入excel
CString ePath,iPath; m_ePath.GetWindowText(ePath); m_iPath.GetWindowText(iPath); _Application app; W ...
- Loadrunner11的关联问题 《转载》
Loadrunner11的关联问题 链接:http://www.51testing.com/html/15/523415-821644.html