一、Redis 简介

"Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache and message broker." —— Redis是一个开放源代码(BSD许可)的内存中数据结构存储,用作数据库,缓存和消息代理。 (摘自官网)

Redis 是一个开源,高级的键值存储和一个适用的解决方案,用于构建高性能,可扩展的 Web 应用程序。Redis 也被作者戏称为 数据结构服务器 ,这意味着使用者可以通过一些命令,基于带有 TCP 套接字的简单 服务器-客户端 协议来访问一组 可变数据结构(在 Redis 中都采用键值对的方式,只不过对应的数据结构不一样罢了)

Redis 的优点

以下是 Redis 的一些优点:

  • 异常快 - Redis 非常快,每秒可执行大约 110000 次的设置(SET)操作,每秒大约可执行 81000 次的读取/获取(GET)操作。
  • 支持丰富的数据类型 - Redis 支持开发人员常用的大多数数据类型,例如列表,集合,排序集和散列等等。这使得 Redis 很容易被用来解决各种问题,因为我们知道哪些问题可以更好使用地哪些数据类型来处理解决。
  • 操作具有原子性 - 所有 Redis 操作都是原子操作,这确保如果两个客户端并发访问,Redis 服务器能接收更新的值。
  • 多实用工具 - Redis 是一个多实用工具,可用于多种用例,如:缓存,消息队列(Redis 本地支持发布/订阅),应用程序中的任何短期数据,例如,web应用程序中的会话,网页命中计数等。

Redis 的安装

这一步比较简单,你可以在网上搜到许多满意的教程,这里就不再赘述。

给一个菜鸟教程的安装教程用作参考:https://www.runoob.com/redis/redis-install.html

测试本地 Redis 性能

当你安装完成之后,你可以先执行 redis-server 让 Redis 启动起来,然后运行命令 redis-benchmark -n 100000 -q 来检测本地同时执行 10 万个请求时的性能:

当然不同电脑之间由于各方面的原因会存在性能差距,这个测试您可以权当是一种 「乐趣」 就好。

二、Redis 五种基本数据结构

Redis 有 5 种基础数据结构,它们分别是:string(字符串)list(列表)hash(字典)set(集合)zset(有序集合)。这 5 种是 Redis 相关知识中最基础、最重要的部分,下面我们结合源码以及一些实践来给大家分别讲解一下。

1)字符串 string

Redis 中的字符串是一种 动态字符串,这意味着使用者可以修改,它的底层实现有点类似于 Java 中的 ArrayList,有一个字符数组,从源码的 sds.h/sdshdr 文件 中可以看到 Redis 底层对于字符串的定义 SDS,即 Simple Dynamic String 结构:

/* Note: sdshdr5 is never used, we just access the flags byte directly.
* However is here to document the layout of type 5 SDS strings. */
struct __attribute__ ((__packed__)) sdshdr5 {
unsigned char flags; /* 3 lsb of type, and 5 msb of string length */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr8 {
uint8_t len; /* used */
uint8_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr16 {
uint16_t len; /* used */
uint16_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr32 {
uint32_t len; /* used */
uint32_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};
struct __attribute__ ((__packed__)) sdshdr64 {
uint64_t len; /* used */
uint64_t alloc; /* excluding the header and null terminator */
unsigned char flags; /* 3 lsb of type, 5 unused bits */
char buf[];
};

你会发现同样一组结构 Redis 使用泛型定义了好多次,为什么不直接使用 int 类型呢?

因为当字符串比较短的时候,len 和 alloc 可以使用 byte 和 short 来表示,Redis 为了对内存做极致的优化,不同长度的字符串使用不同的结构体来表示。

SDS 与 C 字符串的区别

为什么不考虑直接使用 C 语言的字符串呢?因为 C 语言这种简单的字符串表示方式 不符合 Redis 对字符串在安全性、效率以及功能方面的要求。我们知道,C 语言使用了一个长度为 N+1 的字符数组来表示长度为 N 的字符串,并且字符数组最后一个元素总是 '\0'(下图就展示了 C 语言中值为 "Redis" 的一个字符数组)

这样简单的数据结构可能会造成以下一些问题:

  • 获取字符串长度为 O(N) 级别的操作 → 因为 C 不保存数组的长度,每次都需要遍历一遍整个数组;
  • 不能很好的杜绝 缓冲区溢出/内存泄漏 的问题 → 跟上述问题原因一样,如果执行拼接 or 缩短字符串的操作,如果操作不当就很容易造成上述问题;
  • C 字符串 只能保存文本数据 → 因为 C 语言中的字符串必须符合某种编码(比如 ASCII),例如中间出现的 '\0' 可能会被判定为提前结束的字符串而识别不了;

我们以追加字符串的操作举例,Redis 源码如下:

/* Append the specified binary-safe string pointed by 't' of 'len' bytes to the
* end of the specified sds string 's'.
*
* After the call, the passed sds string is no longer valid and all the
* references must be substituted with the new pointer returned by the call. */
sds sdscatlen(sds s, const void *t, size_t len) {
// 获取原字符串的长度
size_t curlen = sdslen(s); // 按需调整空间,如果容量不够容纳追加的内容,就会重新分配字节数组并复制原字符串的内容到新数组中
s = sdsMakeRoomFor(s,len);
if (s == NULL) return NULL; // 内存不足
memcpy(s+curlen, t, len); // 追加目标字符串到字节数组中
sdssetlen(s, curlen+len); // 设置追加后的长度
s[curlen+len] = '\0'; // 让字符串以 \0 结尾,便于调试打印
return s;
}
  • 注:Redis 规定了字符串的长度不得超过 512 MB。

对字符串的基本操作

安装好 Redis,我们可以使用 redis-cli 来对 Redis 进行命令行的操作,当然 Redis 官方也提供了在线的调试器,你也可以在里面敲入命令进行操作:http://try.redis.io/#run

设置和获取键值对

> SET key value
OK
> GET key
"value"

正如你看到的,我们通常使用 SETGET 来设置和获取字符串值。

值可以是任何种类的字符串(包括二进制数据),例如你可以在一个键下保存一张 .jpeg 图片,只需要注意不要超过 512 MB 的最大限度就好了。

当 key 存在时,SET 命令会覆盖掉你上一次设置的值:

> SET key newValue
OK
> GET key
"newValue"

另外你还可以使用 EXISTSDEL 关键字来查询是否存在和删除键值对:

> EXISTS key
(integer) 1
> DEL key
(integer) 1
> GET key
(nil)

批量设置键值对

> SET key1 value1
OK
> SET key2 value2
OK
> MGET key1 key2 key3 # 返回一个列表
1) "value1"
2) "value2"
3) (nil)
> MSET key1 value1 key2 value2
> MGET key1 key2
1) "value1"
2) "value2"

过期和 SET 命令扩展

可以对 key 设置过期时间,到时间会被自动删除,这个功能常用来控制缓存的失效时间。(过期可以是任意数据结构)

> SET key value1
> GET key
"value1"
> EXPIRE name 5 # 5s 后过期
... # 等待 5s
> GET key
(nil)

等价于 SET + EXPIRESETNX 命令:

> SETNX key value1
... # 等待 5s 后获取
> GET key
(nil) > SETNX key value1 # 如果 key 不存在则 SET 成功
(integer) 1
> SETNX key value1 # 如果 key 存在则 SET 失败
(integer) 0
> GET key
"value" # 没有改变

计数

如果 value 是一个整数,还可以对它使用 INCR 命令进行 原子性 的自增操作,这意味着及时多个客户端对同一个 key 进行操作,也决不会导致竞争的情况:

> SET counter 100
> INCR count
(interger) 101
> INCRBY counter 50
(integer) 151

返回原值的 GETSET 命令

对字符串,还有一个 GETSET 比较让人觉得有意思,它的功能跟它名字一样:为 key 设置一个值并返回原值:

> SET key value
> GETSET key value1
"value"

这可以对于某一些需要隔一段时间就统计的 key 很方便的设置和查看,例如:系统每当由用户进入的时候你就是用 INCR 命令操作一个 key,当需要统计时候你就把这个 key 使用 GETSET 命令重新赋值为 0,这样就达到了统计的目的。

2)列表 list

Redis 的列表相当于 Java 语言中的 LinkedList,注意它是链表而不是数组。这意味着 list 的插入和删除操作非常快,时间复杂度为 O(1),但是索引定位很慢,时间复杂度为 O(n)。

我们可以从源码的 adlist.h/listNode 来看到对其的定义:

/* Node, List, and Iterator are the only data structures used currently. */

typedef struct listNode {
struct listNode *prev;
struct listNode *next;
void *value;
} listNode; typedef struct listIter {
listNode *next;
int direction;
} listIter; typedef struct list {
listNode *head;
listNode *tail;
void *(*dup)(void *ptr);
void (*free)(void *ptr);
int (*match)(void *ptr, void *key);
unsigned long len;
} list;

可以看到,多个 listNode 可以通过 prevnext 指针组成双向链表:

虽然仅仅使用多个 listNode 结构就可以组成链表,但是使用 adlist.h/list 结构来持有链表的话,操作起来会更加方便:

链表的基本操作

  • LPUSHRPUSH 分别可以向 list 的左边(头部)和右边(尾部)添加一个新元素;
  • LRANGE 命令可以从 list 中取出一定范围的元素;
  • LINDEX 命令可以从 list 中取出指定下表的元素,相当于 Java 链表操作中的 get(int index) 操作;

示范:

> rpush mylist A
(integer) 1
> rpush mylist B
(integer) 2
> lpush mylist first
(integer) 3
> lrange mylist 0 -1 # -1 表示倒数第一个元素, 这里表示从第一个元素到最后一个元素,即所有
1) "first"
2) "A"
3) "B"

list 实现队列

队列是先进先出的数据结构,常用于消息排队和异步逻辑处理,它会确保元素的访问顺序:

> RPUSH books python java golang
(integer) 3
> LPOP books
"python"
> LPOP books
"java"
> LPOP books
"golang"
> LPOP books
(nil)

list 实现栈

栈是先进后出的数据结构,跟队列正好相反:

> RPUSH books python java golang
> RPOP books
"golang"
> RPOP books
"java"
> RPOP books
"python"
> RPOP books
(nil)

3)字典 hash

Redis 中的字典相当于 Java 中的 HashMap,内部实现也差不多类似,都是通过 "数组 + 链表" 的链地址法来解决部分 哈希冲突,同时这样的结构也吸收了两种不同数据结构的优点。源码定义如 dict.h/dictht 定义:

typedef struct dictht {
// 哈希表数组
dictEntry **table;
// 哈希表大小
unsigned long size;
// 哈希表大小掩码,用于计算索引值,总是等于 size - 1
unsigned long sizemask;
// 该哈希表已有节点的数量
unsigned long used;
} dictht; typedef struct dict {
dictType *type;
void *privdata;
// 内部有两个 dictht 结构
dictht ht[2];
long rehashidx; /* rehashing not in progress if rehashidx == -1 */
unsigned long iterators; /* number of iterators currently running */
} dict;

table 属性是一个数组,数组中的每个元素都是一个指向 dict.h/dictEntry 结构的指针,而每个 dictEntry 结构保存着一个键值对:

typedef struct dictEntry {
// 键
void *key;
// 值
union {
void *val;
uint64_t u64;
int64_t s64;
double d;
} v;
// 指向下个哈希表节点,形成链表
struct dictEntry *next;
} dictEntry;

可以从上面的源码中看到,实际上字典结构的内部包含两个 hashtable,通常情况下只有一个 hashtable 是有值的,但是在字典扩容缩容时,需要分配新的 hashtable,然后进行 渐进式搬迁 (下面说原因)

渐进式 rehash

大字典的扩容是比较耗时间的,需要重新申请新的数组,然后将旧字典所有链表中的元素重新挂接到新的数组下面,这是一个 O(n) 级别的操作,作为单线程的 Redis 很难承受这样耗时的过程,所以 Redis 使用 渐进式 rehash 小步搬迁:

渐进式 rehash 会在 rehash 的同时,保留新旧两个 hash 结构,如上图所示,查询时会同时查询两个 hash 结构,然后在后续的定时任务以及 hash 操作指令中,循序渐进的把旧字典的内容迁移到新字典中。当搬迁完成了,就会使用新的 hash 结构取而代之。

扩缩容的条件

正常情况下,当 hash 表中 元素的个数等于第一维数组的长度时,就会开始扩容,扩容的新数组是 原数组大小的 2 倍。不过如果 Redis 正在做 bgsave(持久化命令),为了减少内存也得过多分离,Redis 尽量不去扩容,但是如果 hash 表非常满了,达到了第一维数组长度的 5 倍了,这个时候就会 强制扩容

当 hash 表因为元素逐渐被删除变得越来越稀疏时,Redis 会对 hash 表进行缩容来减少 hash 表的第一维数组空间占用。所用的条件是 元素个数低于数组长度的 10%,缩容不会考虑 Redis 是否在做 bgsave

字典的基本操作

hash 也有缺点,hash 结构的存储消耗要高于单个字符串,所以到底该使用 hash 还是字符串,需要根据实际情况再三权衡:

> HSET books java "think in java"    # 命令行的字符串如果包含空格则需要使用引号包裹
(integer) 1
> HSET books python "python cookbook"
(integer) 1
> HGETALL books # key 和 value 间隔出现
1) "java"
2) "think in java"
3) "python"
4) "python cookbook"
> HGET books java
"think in java"
> HSET books java "head first java"
(integer) 0 # 因为是更新操作,所以返回 0
> HMSET books java "effetive java" python "learning python" # 批量操作
OK

4)集合 set

Redis 的集合相当于 Java 语言中的 HashSet,它内部的键值对是无序、唯一的。它的内部实现相当于一个特殊的字典,字典中所有的 value 都是一个值 NULL。

集合 set 的基本使用

由于该结构比较简单,我们直接来看看是如何使用的:

> SADD books java
(integer) 1
> SADD books java # 重复
(integer) 0
> SADD books python golang
(integer) 2
> SMEMBERS books # 注意顺序,set 是无序的
1) "java"
2) "python"
3) "golang"
> SISMEMBER books java # 查询某个 value 是否存在,相当于 contains
(integer) 1
> SCARD books # 获取长度
(integer) 3
> SPOP books # 弹出一个
"java"

5)有序列表 zset

这可能使 Redis 最具特色的一个数据结构了,它类似于 Java 中 SortedSetHashMap 的结合体,一方面它是一个 set,保证了内部 value 的唯一性,另一方面它可以为每个 value 赋予一个 score 值,用来代表排序的权重。

它的内部实现用的是一种叫做 「跳跃表」 的数据结构,由于比较复杂,所以在这里简单提一下原理就好了:

想象你是一家创业公司的老板,刚开始只有几个人,大家都平起平坐。后来随着公司的发展,人数越来越多,团队沟通成本逐渐增加,渐渐地引入了组长制,对团队进行划分,于是有一些人又是员工又有组长的身份

再后来,公司规模进一步扩大,公司需要再进入一个层级:部门。于是每个部门又会从组长中推举一位选出部长。

跳跃表就类似于这样的机制,最下面一层所有的元素都会串起来,都是员工,然后每隔几个元素就会挑选出一个代表,再把这几个代表使用另外一级指针串起来。然后再在这些代表里面挑出二级代表,再串起来。最终形成了一个金字塔的结构。

想一下你目前所在的地理位置:亚洲 > 中国 > 某省 > 某市 > ....,就是这样一个结构!

有序列表 zset 基础操作

> ZADD books 9.0 "think in java"
> ZADD books 8.9 "java concurrency"
> ZADD books 8.6 "java cookbook" > ZRANGE books 0 -1 # 按 score 排序列出,参数区间为排名范围
1) "java cookbook"
2) "java concurrency"
3) "think in java" > ZREVRANGE books 0 -1 # 按 score 逆序列出,参数区间为排名范围
1) "think in java"
2) "java concurrency"
3) "java cookbook" > ZCARD books # 相当于 count()
(integer) 3 > ZSCORE books "java concurrency" # 获取指定 value 的 score
"8.9000000000000004" # 内部 score 使用 double 类型进行存储,所以存在小数点精度问题 > ZRANK books "java concurrency" # 排名
(integer) 1 > ZRANGEBYSCORE books 0 8.91 # 根据分值区间遍历 zset
1) "java cookbook"
2) "java concurrency" > ZRANGEBYSCORE books -inf 8.91 withscores # 根据分值区间 (-∞, 8.91] 遍历 zset,同时返回分值。inf 代表 infinite,无穷大的意思。
1) "java cookbook"
2) "8.5999999999999996"
3) "java concurrency"
4) "8.9000000000000004" > ZREM books "java concurrency" # 删除 value
(integer) 1
> ZRANGE books 0 -1
1) "java cookbook"
2) "think in java"

扩展/相关阅读

  1. 阿里云 Redis 开发规范 - https://www.infoq.cn/article/K7dB5AFKI9mr5Ugbs_px
  2. 为什么要防止 bigkey? - https://mp.weixin.qq.com/s?__biz=Mzg2NTEyNzE0OA==&mid=2247483677&idx=1&sn=5c320b46f0e06ce9369a29909d62b401&chksm=ce5f9e9ef928178834021b6f9b939550ac400abae5c31e1933bafca2f16b23d028cc51813aec&scene=21#wechat_redirect
  3. Redis【入门】就这一篇! - https://www.wmyskxz.com/2018/05/31/redis-ru-men-jiu-zhe-yi-pian/

参考资料

  1. 《Redis 设计与实现》 - http://redisbook.com/
  2. 【官方文档】Redis 数据类型介绍 - http://www.redis.cn/topics/data-types-intro.html
  3. 《Redis 深度历险》 - https://book.douban.com/subject/30386804/
  4. 阿里云 Redis 开发规范 - https://www.infoq.cn/article/K7dB5AFKI9mr5Ugbs_px
  5. Redis 快速入门 - 易百教程 - https://www.yiibai.com/redis/redis_quick_guide.html
  6. Redis【入门】就这一篇! - https://www.wmyskxz.com/2018/05/31/redis-ru-men-jiu-zhe-yi-pian/
  • 本文已收录至我的 Github 程序员成长系列 【More Than Java】,学习,不止 Code,欢迎 star:https://github.com/wmyskxz/MoreThanJava
  • 个人公众号 :wmyskxz,坚持原创输出,下方扫码关注,2020,与您共同成长!

非常感谢各位人才能 看到这里,如果觉得本篇文章写得不错,觉得 「我没有三颗心脏」有点东西 的话,求点赞,求关注,求分享,求留言!

创作不易,各位的支持和认可,就是我创作的最大动力,我们下篇文章见!

Redis(1)——5种基本数据结构的更多相关文章

  1. 你真的懂Redis的5种基本数据结构吗?

    摘要: 你真的懂Redis的5种基本数据结构吗?这些知识点或许你还需要看看. 本文分享自华为云社区<你真的懂Redis的5种基本数据结构吗?这些知识点或许你还需要看看>,作者:李子捌. 一 ...

  2. Redis(一)基础数据结构

    1.目录 Redis 基础数据结构 string (字符串) list (列表) hash (字典) set (集合) zset (集合) 容器型数据结构的通用规则 过期时间 2.Redis 基础数据 ...

  3. Redis的5种数据结构

    Redis可以存储可以存储键与5种不同数据结构类型之间的映射. 五种结构类型为:STRING(字符串).LIST(列表).SET(集合).HASH(散列).ZSET(有序集合). 1.字符串类型Str ...

  4. Redis 的几种数据结构&五种数据类型对象

    先看几种数据结构 通过分析底层的数据结构,学习如何根据场景选型和设计 1,简单动态字符串 redis使用的字符串SDS有别于C语言中的字符串 a, 结构 free字段为已分配但未使用的空间 len为已 ...

  5. Redis 中 5 种数据结构的使用场景介绍

    这篇文章主要介绍了Redis中5种数据结构的使用场景介绍,本文对Redis中的5种数据类型String.Hash.List.Set.Sorted Set做了讲解,需要的朋友可以参考下 一.redis ...

  6. Redis入门到高可用(四)—— Redis的五种数据结构的内部编码

    Redis的五种数据结构的内部编码

  7. 详细介绍Redis的几种数据结构以及使用注意事项(转)

    原文:详细介绍Redis的几种数据结构以及使用注意事项 1. Overview 1.1 资料 <The Little Redis Book>,最好的入门小册子,可以先于一切文档之前看,免费 ...

  8. Redis系列(二):Redis的5种数据结构及其常用命令

    上一篇博客,我们讲解了什么是Redis以及在Windows和Linux环境下安装Redis的方法, 没看过的同学可以点击以下链接查看: Redis系列(一):Redis简介及环境安装. 本篇博客我们来 ...

  9. Redis五种基础与三种高级数据结构解析

    记得点赞+关注呦. 前言 在 Redis 最重要最基础就属 它丰富的数据结构了,Redis 之所以能脱颖而出很大原因是他数据结构丰富,可以支持多种场景.并且 Redis 的数据结构实现以及应用场景在面 ...

随机推荐

  1. 论文翻译——Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection

    Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection 动态池和展开递归自动编码器的意译检测 论文地 ...

  2. 用最小的空间复杂度找出一个长度为n的数组且数据中的元素是[0,n-1]中任一个重复的数据。

    用最小的空间复杂度找出一个长度为n的数组且数据中的元素是[0,n-1]中任一个重复的数据. 比如:[1, 2, 3, 3, 2, 2, 6, 7, 8, 9] 中 2 or 3 分析:这道题目,实现比 ...

  3. Gitbook在 Mac 环境上的安装及使用

    一.在 Mac 环境上搭建 gitbook #.安装node.js,在node.js官网下载,直接安装稳定版本. https://nodejs.org/en/ #.检测 node.js 是否安装成功 ...

  4. 缩写: i = i + 1 和 i += 1,可以看做是 i 自加的值 是1。

    i +=  1; 这样有助于记忆: i自加的值等于1

  5. GSON解译Json为DTO

    除了用okhttp网络库外,还用到google的gson库. 1. uti类的对象一般都用懒汉模式.这次gson也是用懒汉模式. public class GsonTools { private st ...

  6. Java--类以及对象

    什么是类 就是将一类事物的相同的本质特性抽象出来,类具有属性和方法,属性就是特征(具有什么),方法就是行为(能做什么). 类是一种引用的数据类型,类创建的对象的过程叫做实例化 什么是对象 对象就是类中 ...

  7. springboot集成aop日志

    日常开发中假如是前后端完全分离,我们会习惯用浏览器去调用controller的接口来测试.这一个过程普通的日志功能会记录sql参数等一些基本信息.但是假如项目越来越庞大,我们的包越来越多,在维护项目和 ...

  8. shiro PermissionUtil

    package org.linlinjava.litemall.admin.util; import org.apache.shiro.authz.annotation.RequiresPermiss ...

  9. VisitsService

    package me.zhengjie.monitor.domain; import lombok.Data; import org.hibernate.annotations.CreationTim ...

  10. 系统学习Javaweb6----JavaScript2

    感想:感觉自己还是只是学到皮毛,仍需继续努力,明天开始需要学习Android和阅读感想的书写. 学习笔记: 2.3.运算符 JavaScript运算符与java运算符基本一致. 这里我们来寻找不同点进 ...