在一个平面直角坐标系的第一象限内,如果一个点(x,y)与原点(0,0)的连线中没有通过其他任何点,则称该点在原点处是可见的。

例如,点(4,2)就是不可见的,因为它与原点的连线会通过点(2,1)。

部分可见点与原点的连线如下图所示:

编写一个程序,计算给定整数N的情况下,满足0≤x,y≤N0≤x,y≤N的可见点(x,y)的数量(可见点不包括原点)。

输入格式

第一行包含整数C,表示共有C组测试数据。

每组测试数据占一行,包含一个整数N。

输出格式

每组测试数据的输出占据一行。

应包括:测试数据的编号(从1开始),该组测试数据对应的N以及可见点的数量。

同行数据之间用空格隔开。

数据范围

1≤N,C≤10001≤N,C≤1000

输入样例:

4
2
4
5
231

输出样例:

1 2 5
2 4 13
3 5 21
4 231 32549
题意:求给定区域内的可见点个数是多少个
思路:很容易看出可见点的要求就是gcd(x,y)=1 因为gcd不为1的话,那么

AcWing 201. 可见的点 (欧拉函数打表)打卡的更多相关文章

  1. A - Bi-shoe and Phi-shoe (欧拉函数打表)

    Description Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a ver ...

  2. hdu 2824 The Euler function 欧拉函数打表

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. UVA 11426 GCD - Extreme (II)(欧拉函数打表 + 规律)

    Given the value of N, you will have to find the value of G. The definition of G is given below:Here ...

  4. POJ 2478 欧拉函数打表的运用

    http://poj.org/problem?id=2478 此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法. PS:因为最后得到的结果会很 ...

  5. uva 11426 GCD - Extreme (II) (欧拉函数打表)

    题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...

  6. LightOJ - 1370 Bi-shoe and Phi-shoe (欧拉函数打表)

    题意:给N个数,求对每个数ai都满足最小的phi[x]>=ai的x之和. 分析:先预处理出每个数的欧拉函数值phi[x].对于每个数ai对应的最小x值,既可以二分逼近求出,也可以预处理打表求. ...

  7. light1370 欧拉函数打表

    /* 给定n个数ai,要求欧拉函数值大于ai的最小的数bi 求sum{bi} */ #include<bits/stdc++.h> using namespace std; #define ...

  8. 杭电多校第十场 hdu6434 Count 欧拉函数打表 快速打表模板

    Problem I. Count Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Other ...

  9. HDU 2824 简单欧拉函数

    1.HDU 2824   The Euler function 2.链接:http://acm.hdu.edu.cn/showproblem.php?pid=2824 3.总结:欧拉函数 题意:求(a ...

随机推荐

  1. 转-C++之string判断字符串是否包含某个子串

    转自:https://blog.csdn.net/zhouxinxin0202/article/details/77862615/ 1.string类函数find C++的string类提供了字符串中 ...

  2. HTML5: HTML5 应用程序缓存

    ylbtech-HTML5: HTML5 应用程序缓存 1.返回顶部 1. HTML5 应用程序缓存 使用 HTML5,通过创建 cache manifest 文件,可以轻松地创建 web 应用的离线 ...

  3. 【消息中间件】kafka

    一.kafka整体架构 kafka是一个发布订阅模式的消息队列,生产者和消费者是多对多的关系,将发送者与接收者真正解耦: 生产者将消息发送到broker: 消费者采用拉(pull)模式订阅并消费消息: ...

  4. <读书笔记>《高性能网站建设指南:前端工程师技能精髓》

    只有10-20%的最终用户响应时间花在了下载HTML文档上.其余的80-90%时间花在了下载页面中的所有组件上. 规则1.减少HTTP请求 图片地图:将多个图片合并成一个,而后通过css定位显示不同的 ...

  5. Node.js、vue.js的使用

    Vue.js的使用 1.下载Node.js 2.打开cmd 3.执行命令 npm i 4.输入命令 npm run serve 5.浏览器打开  http://localhost:8080

  6. PHP上传文件超过文件最大限制导致无法上传成功

    最近在学习<HeadFirst PHP & MySQL>一书的第5章"使用存储在文件中的数据",做一个文件上传的应用时,出现了错误,就是文件无法成功上传.这个问 ...

  7. [已解决]报错: Python Scrapy - service_identity(opentype) not working and cannot install

    解决:更新安装service_identity pip3 install service_identity --force --upgrade

  8. Java原理领悟-JMM(java内存模型认知)

    总线锁.缓存锁.MESI缓存一致性协议.CPU 层面的内存屏障 1.JMM定义: Java Memory Model(java内存模型)是一系列的Java虚拟机平台对开发者提供的多线程环境下的内存可见 ...

  9. android中的ContentProvider实现数据共享

    为了在应用程序之间交换数据,android中提供了ContentProvider,ContentProvider是不同应用程序之间进行数据交换的标准API.当一个应用程序需要把自己的数据暴露给其他程序 ...

  10. 回头看看HTML5

    前言:自从学习各种框架各种成熟的控件库,越来越觉得疲惫. 一.用语义元素构造网页 在html5中最常用到的页面结构相关的语义元素如下: 页面结构想相关的语义元素 元素 说明 <article&g ...