spark复习笔记(3)
在windows上实现wordcount单词统计
一、编写scala程序,引入spark类库,完成wordcount
1.sparkcontextAPI

sparkcontext是spark功能的主要入口点,代表着到spark集群的连接,可用于在这些集群上创建RDD(弹性分布式数据集),累加器和广播变量。在每一个JVM上面只允许一个活跃的sparkcontext。在创建一个新的RDD之前,你应该停止这个活跃的SparkContext
2.sparkconf配置对象

sparkconf是对spark应用的配置,用来设置键值对的各种spark参数。大多数的时候,你需要通过new sparkconf的方式来创建一个对象,会从任何的spark系统属性中记性加载,从这个方面来讲,你在sparkconf上设置的参数会直接影响你在整个系统属性中的优先级
3.scala版单词统计:wordCount
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
object WordCount {
def main(args: Array[String]): Unit = {
//创建spark配置对象
val conf = new SparkConf();
//设置app名字
conf.setAppName("WordConf")
//创建master
conf.setMaster("local");
//创建spark上下文对象
val sc = new SparkContext(conf);
//加载文本文件
val rdd1 = sc.textFile("E:\\studyFile\\data\\test.txt")
//对rdd1中的对象压扁
val rdd2 = rdd1.flatMap(line=>line.split(" "))
//映射w=>(w,1)
val rdd3 = rdd2.map((_,))
val rdd4 = rdd3.reduceByKey(_ + _)
val r= rdd4.collect()
//遍历打印
r.foreach(println)
}
}
3.java版单词统计:wordCount
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2; import java.util.ArrayList;
import java.util.Iterator;
import java.util.List; public class WordCountJava2 {
//创建conf对象
public static void main(String[] args){
SparkConf conf = new SparkConf();
conf.setAppName("WordCountJava2");
conf.setMaster("local");
//创建java版的sparkContext上下文对象
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> rdd1=sc.textFile("E:/studyFile/data/test.txt");
//先将单词压扁
JavaRDD<String> rdd2 = rdd1.flatMap(new FlatMapFunction<String, String>() {
//迭代的方法
public Iterator<String> call(String s) throws Exception {
List<String> list = new ArrayList<String>();
String[] arr = s.split(" ");
for(String ss:arr){
list.add(ss);
}
return list.iterator();
}
});
//映射,将单词映射为:word===>(word,1)
JavaPairRDD<String,Integer> rdd3=rdd2.mapToPair(new PairFunction<String, String, Integer>() { public Tuple2<String, Integer> call(String s) throws Exception {
return new Tuple2<String, Integer>(s,);
}
});
JavaPairRDD<String,Integer> rdd4 = rdd3.reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer v1, Integer v2) throws Exception {
//函数捏合的过程
return v1+v2;
}
});
List<Tuple2<String,Integer>> list=rdd4.collect();
for(Tuple2<String,Integer> t :list){
System.out.println(t._1+":"+t._2);
}
}
}
4.提交作业到完全分布式spark集群上来运行
1)到处jar包
2)spark-submit --master local --name WordCount --class com.jd.spark.scala.WordCountDemoScala spark-daemon1-1.0-SNAPSHOT.jar /home/centos/test.txt
5.提交作业到完全分布式spark集群上来运行(只需要hdfs)
1)需要启动hadoop集群
$>start-dfs.sh
2)put文件到hdfs
hdfs dfs -put test.txt /user/centos/hadoop/
2)spark-submit提交命令运行job
$>spark-submit --master spark://s11:7070 --name WordCount --class com.jd.spark.scala.WordCountDemoScala spark-daemon1-1.0-SNAPSHOT.jar hdfs://s11:8020/user/centos/hadoop/test.txt
spark复习笔记(3)的更多相关文章
- spark复习笔记(1)
使用spark实现work count ---------------------------------------------------- (1)用sc.textFile(" &quo ...
- spark复习笔记(7):sparkstreaming
一.介绍 1.sparkStreaming是核心模块Spark API的扩展,具有可伸缩,高吞吐量以及容错的实时数据流处理等.数据可以从许多来源(如Kafka,Flume,Kinesis或TCP套接字 ...
- spark复习笔记(7):sparkSQL
一.saprkSQL模块,使用类sql的方式访问Hadoop,实现mr计算,底层使用的是rdd 1.hive //hadoop mr sql 2.phenoix //hbase上构建sql的交互过 ...
- spark复习笔记(6):RDD持久化
在spark中最重要的功能之一是跨操作在内存中持久化数据集.当你持久化一个RDD的时候,每个节点都存放了一个它在内存中计算的一个分区,并在该数据集的其他操作中进行重用,持久化一个RDD的时候,节点上的 ...
- spark复习笔记(6):数据倾斜
一.数据倾斜 spark数据倾斜,map阶段对key进行重新划分.大量的数据在经过hash计算之后,进入到相同的分区中,zao
- spark复习笔记(4):RDD变换
一.RDD变换 1.返回执行新的rdd的指针,在rdd之间创建依赖关系.每个rdd都有一个计算函数和指向父rdd的指针 Spark是惰性的,因此除非调用某个转换或动作,否则不会执行任何操作,否则将触发 ...
- spark复习笔记(5):API分析
0.spark是基于hadoop的mr模型,扩展了MR,高效实用MR模型,内存型集群计算,提高了app处理速度. 1.特点:(1)在内存中存储中间结果 (2)支持多种语言:java scala pyt ...
- spark复习笔记(4):spark脚本分析
1.[start-all.sh] #!/usr/bin/env bash # # Licensed to the Apache Software Foundation (ASF) under one ...
- spark复习笔记(3):使用spark实现单词统计
wordcount是spark入门级的demo,不难但是很有趣.接下来我用命令行.scala.Java和python这三种语言来实现单词统计. 一.使用命令行实现单词的统计 1.首先touch一个a. ...
随机推荐
- linux运维、架构之路-Kubernetes集群部署TLS双向认证
一.kubernetes的认证授权 Kubernetes集群的所有操作基本上都是通过kube-apiserver这个组件进行的,它提供HTTP RESTful形式的API供集群内外客户端调 ...
- mysql UNION操作符 语法
mysql UNION操作符 语法 作用:用于合并两个或多个 SELECT 语句的结果集. 语法:SELECT column_name(s) FROM table_name1 UNION SELECT ...
- 【Java】JavaMail使用网易企业邮箱发邮件
邮件发送器 /** * 邮件发送器 * * @author Zebe */ public class MailSender implements Runnable { /** * 收件人 */ pri ...
- Content-type的几种常见类型
一.是什么? 是Http的实体首部字段,用于说明请求或返回的消息主体是用何种方式编码,在request header和response header里都存在. 二.几个常用类型: 1.applicat ...
- 在Ubuntu18.04下安装Java 11
一直以来,本人都使用第三方软件包"ppa:linuxuprising/java"安装Java JDK,最近一次安装时发现无法成功.这是由于现在无法直接从Oracle官网下载Java ...
- JavaScript-Templates
https://github.com/blueimp/JavaScript-Templates https://blueimp.github.io/JavaScript-Templates/ http ...
- Android操作系统中11种传感器的介绍【转】
本文转载自:http://www.oschina.net/question/163910_28354 在Android2.3 gingerbread系统中,google提供了11种传感器供应用层使用. ...
- p2619 [国家集训队2]Tree I [wqs二分学习]
分析 https://www.cnblogs.com/CreeperLKF/p/9045491.html 反正这个博客看起来很nb就对了 但是不知道他在说啥 实际上wqs二分就是原来的值dp[x]表示 ...
- 《JavaScript 高级程序设计》
第 3 章 基本概念 3.5.2 位操作符 ECMAScript 中所有数值都是以 IEEE-754 64 位格式存储,但位操作符并不直接操作 64 位的值.而是先将 64 位的值转换成 32 位的整 ...
- 003-CHROME开发者工具的小技巧
首先调试先进入到调试模式,快键键F12 1.代码格式化 有很多css/js的代码都会被 minify 掉,你可以点击代码窗口左下角的那个 { } 标签,chrome会帮你给格式化掉. 2.强制DOM ...